
Defense Report 1 - Year Zero

Bearth Studio

March 13, 2019

timothee.ribes

enguerrand.vie

nicola.brankovic

axel.ribon

1

Contents

1

2

Introduction

Development on distributed tasks
2.1 Timothy. .

2.1.1 Tutorial. .
2.1.2 Website. .
2.1.3 Dubbing. Nicola.
.
2.2.1 Website. .
2.2.2 Tutorial. .
2.2.3 Scenario. Enguerrand.
.
2.3.1 Creation of logos. .
2.3.2 Design of the graphic identity.
2.3.3 Main menu. .
2.3.4 Loading screen. 11
2.3.5 Button animations. 11
2.3.6 Game screen. 12 Axel.
. 15
2.4.1 Controls. 16
2.4.2 Managers. 18
2.4.3 Game. 18
2.4.4 menus. 20
2.4.5 Interface. 22
2.4.6 Units. 27
2.4.7 Buildings. 28
2.4.8 Graphics. 30
2.4.9 Waitting room. 31
2.4.10 Skill Tree. 31
2.4.11 Online. 32
2.4.12 Assessment and Outlook for the next defenses. . 33

Conclusion 34

2.2

2.3

2.4

3

3

4
4
4
4
4
5
5
5
6
6
7
7
8

2

1 Introduction

Year Zero is a space strategy game in which several teams compete for
supremacy in the universe. It controls buildings that produce units on a map
with fixed boundaries.
The chosen game engine is Unity and the language used is CSharp (C). The artistic direction will
be fanciful and unrealistic in order to give a dark but not shocking tone. The objective is to
make the game all public. The cardboard aspect was preferred to realism in order to make the
atmosphere of the game quite light but without losing the strategy aspect. However we wanted
to keep a certain degree of realism in order to keep a dramatic side in view of the history of the
game. From a sound point of view the game will be quite epic with big catchy themes. But he
will also juggle with calmer and more melancholy themes to recall the desperate condition of
humanity. The epic aspect being purely playful and the dramatic aspect serving to reinforce the
intentions of the scenario.

For this first defense we made sure that the important bases of the game
were ready in order to leave only the artistic parts and the arti fi cial intelligence
for the other defenses.

3

2 Development on distributed tasks

2.1 Timothy

My work on this project is spread over several areas of the game which are
diverse. This is mainly the tutorial of the game, the sound aspects and help with
the design of the website.

2.1.1 Tutorial

The tutorial consists of a scripted part in which the player must perform the
actions requested to move forward while understanding and learning the
mechanics of the game. The first difficulty that arises in this kind of exercise is to
put oneself in the player's shoes and for that to forget as much as possible his
knowledge and habits in relation to the game on which we play, or even in
relation to the whole genre. Likewise, we have to get him to understand the
actions he has to perform and for that we have decided to display messages and
pause the game while the player reads and can move forward at his own pace
with his mouse. We have chosen to make a simple tutorial which explains only
the concise basics of the game in order to leave some experience of discovery
and to do something very light that can be replayed very quickly if necessary to
remember the main workings of units and buildings. . On the technical side this
consisted mainly of using the tools set up for the operation of the game and how
to link them together by a script that executes each step to be performed. This
requires communication with Axel for the understanding and sometimes the
adaptation of the code, but also the graphic adjustments of Enguerrand which
allow the game to always remain aesthetically coherent. It is therefore our ability
to work together on the same elements that is brought into play at this time.

2.1.2 Website

For my part, I have never taken part in the design of a website, so I
particularly worked on the aspect of rendering and functionalities with Nicola
who already had skills in this area.

2.1.3 Dubbing

The set of music and sounds that will be an integral part of the game,
especially during the games and the various interactions of the player and the

4

The actions of the units themselves will have to be developed for the next
support at the same time as the internal graphics of the game. In addition, the
units will have voices which respond to the orders given. For example, during an
attack order given to a vessel, we will hear "attack". In addition, the texts and
dialogues of the campaign will be dubbed to really create a story with a
narration corresponding to the scenario of Year Zero.

2.2 Nicola

I am going to present here my work carried out on this project, the first thing that
was given to me to do was the scenario, in fact even if the theme and the atmosphere of
the game had already been decided upstream, the scenario allows to develop the play in
one direction and achieve a certain harmony between the general style chosen, the
campaign and the site.

2.2.1 Website

Not being specialized in the creation of Internet sites, I decided to use the
Wix tool in order to provide a clean result. I wanted to keep the theme of the
game in the website, so I reused one of the dominant fonts in our game and the
menu background image. I then followed the plan proposed in the Project File,
and therefore incorporated the download links of the Specifications, the defense
report and the "lite" version of the game, and a complete presentation of
members of Bearth Studio. Taking into account the fact that the site is not
obligatory until defense 2, this is only a sketch of the site, it will surely be
remodeled later.

2.2.2 Tutorial

The tutorial aims to present the basic mechanics of the game, it sets the
atmosphere of the game, and gives the main keys to victory for an RTS. During
this, the player will be presented how to select the units / buildings but also the
base buildings and their utilities, the use of the Builder which is the construction
/ harvest unit, the combat units and how to create them, how to collect
resources, how to use them and finally the functioning of the SkillTree, original
element at the center of the gameplay of Year Zero. In order to force the player
to listen to the instructions of the tutorial, we had to limit the actions that this
one can carry out, and to verify that the requests of the tutorial are satisfied
before continuing. The tutorial, being one of the first experiences of the game
that we have been able to have,

5

incomplete or missing gameplay, but also some implementations that will be
necessary to continue the campaign.

2.2.3 Scenario

In the future, albeit distant, mankind has finally overcome the di ffi culies it
has encountered; war, pollution, energy crisis, overpopulation ... The world lived
in peace. But nothing is eternal, and man's thirst for space conquest and the
discovery of extraterrestrial life has turned against him. Returning from a long
mission to the outskirts of the solar system and after having visited many moons
and planets, an astronaut team would have brought back an extraterrestrial
parasite, taking control of the body of its host, making it into one. empty shell,
free from any desire, or more precisely, than any desire which could have
previously animated them. The infected people only thought about spreading
the parasite in as many hosts as possible, and once their numbers were
sufficient, they took up arms. We must not believe that humanity has stood idly
by in front of their sick comrades. But the parasite spread very quickly, and
resources quickly became limited. And the only cure that could be developed
was a vaccine, preventing the parasite from implanting in the host but powerless
against the infected. A big step forward in the face of this threat, but a little late,
a large part of humanity was already under the in fl uence of the parasite, there
remained only a handful of resistance fighters, ready to do anything to recover
their resources. land, to fight against their brothers, who today behaved like
common ants. But every day mankind was retreating, until one day they were
forced to leave earth, forced to survive in mankind's last spaceships. Today,
humanity is brought to its knees and the present inhabitants of the earth are
chasing them and gradually recreating their military arsenal destroyed during
the war. Humanity can no longer let it go, it is, armed to the teeth, in vessels
worthy of the best science-fiction, that a handful of humans, will have to fight,
for one day, return to earth and mark the start of a new era, Year Zero.

2.3 Enguerrand

My work so far has mainly been done in Photoshop. Considering that the
graphic and artistic aspect of the game constitutes the major part of my work on
Year Zero, I have given myself the means to achieve beautiful things, integrating
as well as possible into the universe that we have created. Besides the artistic
creation on Phosothop, I also had to order all the

6

elements of our game within Unity so that the visual rendering is pleasant and
pleasant, as well as ergonomic and practical. For the next defense, I will focus in
more detail on the import of 3D models of the various units and buildings, as
well as on the generation of the map and the combat system.

2.3.1 Creation of logos

Responsible for the visual part of the game, I looked first, when writing the
specifications, on the design of a logo for the game, as well as for the group. A
sort of video game development and publishing studio. Already presented when
rendering the specifications, the logos of Year Zero and Bearth Studio predominantly
contain the colors red, blue and purple in various shades. Wanting to give a
spatial aspect to relate to the main theme of the game, the logos became a
benchmark throughout future design as far as game design is concerned.

2.3.2 Graphic identity design

Apart from the logos, which are only a less visible part than the interface of
the game for example, it was necessary to determine the guidelines of the
artistic direction of Year Zero in order to keep the same colors, shapes and so
on. All in the pretension of wanting to create a catchy and immersive
atmosphere. It is therefore in warm color tones, approaching red, purple and
blue that Year Zero will take shape. The font that we will mostly use is Orbitron
Black for most of the texts and for some titles we will use Space Age.

Figure 1 - Police Orbitron Black

Figure 2 - Police Space Age

7

2.3.3 Main menu

It was towards the main menu that I leaned first. To the already existing
menu, made up of buttons without texture, and the default Unity background, I
added a background which is an image in the space where we see nebulae. I
added the logos of Year Zero and Bearth Studio at the bottom left and right
respectively. Finally I created in Photoshop the title logo Year Zero that I
imported into Unity in order to put it above the buttons.

8

Figure 3 - Main menu

Not having a precise idea of how I was going to design the buttons, I tried a
few versions with various colors, still creating a button image in Photoshop that
would overlap the Unity button.

Figure 4 - Testing some buttons

Finally, I created a new texture for the buttons that I imported. It turned out
that it stuck well to the bottom and to the rest, so we kept it.

I declined this same texture in several versions in order to integrate as well
as possible in all the scenes of our Unity project and in all the situations where
we were going to need it.

9

Figure 5 - Button texture

Figure 6 - Button for a fill bar

Figure 7 - Square button with rounded
edges

Figure 8 - Hexagon shaped button

Finally, it's towards hexagon-shaped buttons that I'm leaning, wanting to
innovate a bit so that we don't have buttons that seem to be Unity's only by
default. Instead of marking where these buttons redirect, I thought to myself
that it was probably more self-explanatory and also more visually pleasing to put
icons instead of text. We then had a menu that was starting to take shape.

Figure 9 - Rectangle button with
rounded edges

10

Figure 10 - Main menu

I also added for an e ff ect of immersion within the menu, two layers of stars
materialized by two images containing transparency and stars. I added an
animation to them so that they turn on themselves without stopping. I also
created via a small script, a parallax effect (which we will find later). Parallax is a
way of rendering depth and distance. Here, it is a question of making follow the
movements of the mouse in the main menu to the background image but with a
slight coe ffi cient. The effect is very light here, it is only visual.

2.3.4 Loading screen

Besides the main menu scene, there is a scene that is rarely visible since it
happens very quickly. This is the loading screen scene. It is simple in that it only
consists of the same background as the main menu, as well as a progress bar
and a message that displays.
LOADING ...

2.3.5 Button animations

Adding animations to the buttons was necessary to create dynamism in the
navigation within the menus. The animation is the same for all the buttons of the
main menu and its submenus. It consists of the enlargement of the button. So
when the mouse passes over the button, the latter sees

11

its size increase slightly.

2.3.6 Game screen

Global environment
When you arrive in a game, you are in space. It is necessary to have a suitable
environment. Thus the ground from which the units move is encompassed in a Skybox
which corresponds to a sphere whose texture is an image, here of space. The
rendering makes sure to respect a kind of immersion in this sphere and gives
the impression that the depth is infinite.

E ff and parallax
When you move the camera around the game, you only get the impression of
movement if you see units rolling by. This is why I added more than four layers
of stars below the ground, all at di de erent heights so that when moving, the
stars more or less follow the movement depending on how far they are from the
ground. ground or not.

Inteface
Most of my work until this defense has been the design of the interface in a part.
Everything was done in Photoshop and then imported into Unity. I realized in an
image which will constitute the overall interface in the game.

Figure 11 - Interface image

12

Figure 12 - In-game interface

In the same way as for the main menu, the action buttons of the units have,
instead of a text, an icon, as well as the texture of a square button (cf: Figure 7).

13

Figure 13 - Buttons with icons

There are also navigation buttons above the screen. The texture associated
with them is the rectangular button with rounded edges. The text has been left
for a better understanding of their action and the color has been put on a
golden, yellow which is doing well to the rest of the interface.

Figure 14 - Buttons with icons

To their right, there is a button for the skill tree, with its associated icon. Also
to its right, we find the resource indicators. Originally, they are buttons but we
cannot interact with them, hence their darker color than the others. The color of
the text and numbers has also been set to gold, yellow.

Figure 15 - Resource buttons

The minimap buttons are also present, also formed by their texture and an
icon, as for all the others made by me on

14

Photoshop. We also find the inactive constructor button made in the same way.
All of these buttons have the same animation, which changes their color
depending on their state. The four distinct states being: Highlighted if the
mouse is on the button, Pressed if the mouse clicked on the button, Disabled
if we can not interact with the button as well as the default state.

Figure 16 - Button hovered over by the mouse

Figure 17 - Button clicked

2.4 Axel

I am going to present here each functionality that I added to the game, my
feelings, the problems that have arisen as well as my forecasts for the next
presentations.
First of all in order to structure my part correctly, I will not present my work in
chronological order but rather by section. The di ff erent systems being
intertwined with each other, I was not able to develop them all one after the
other but by building everything little by little. However, I will keep the order as
chronological as possible.

15

2.4.1 Controls

Selection
Beyond creating the project on Unity, my first task was to develop a unit
selection system. The principle is a simple one, a left click on a unit selects it, but
to this is added the selection of several units which occurs when we perform a
left click on the mouse and then move it to form a rectangle used to select all the
units in this rectangle. I then gave some speci fi cities to this algorithm, for
example, if we select a building we can only select one, if we double-left click we
select all the units on the screen which are of the same type as the one under
the mouse pointer, or again, if we draw a rectangle around units that do not
belong to us, we will fi nally select only one. Too, a right click on a unit will
perform the appropriate interaction. This algorithm is one of the most complex
that I have been given to develop within the framework of this project as it takes
into account parameters, I had to think it over and rethink it continuously as I
added to it. features.

My first di ffi culty was how I could select the unit under the mouse pointer. After
some research, I discovered the Raycast principle, this Unity feature allows to
send a ray from a point and following a defined direction vector and returns the
object encountered by the ray. So I send a ray from the position of the mouse
and directed to the point just below the mouse to access the unit and thus select
it. The multi-selection system is simpler but also much more demanding, it will
go through the list of units and transpose their 3D coordinate into 2D then select
them if they are in the drawn rectangle.

Player control system
As I added functionalities to the game, it appeared to me that a system had to be
created to manage di ff erent control pro fi les, for example when we want to
place a marker on the map we press the button associated and we then go to a
new very simpli fi ed key pro fi le in which a left click on the minimap will place
the marker and a click outside the minimap or else pressing the ESC key will
cancel the marker mode to return to the controls classic. Without this system it
would be complicated to isolate certain functionalities and for example opening
the pause menu would not prevent the selection of units or the movement of
the camera, which poses a problem.

System training

16

I developed this algorithm quite recently because it was not one of our priorities
but its usefulness is indisputable both from a technical point of view and for the
player. In fact, this is a system allowing to move its units in formation, for the
moment only the rectangular formation is implemented. This system prevents
all the units from trying to reach the same point when they are made to move
because technically only one will reach it before the others and will thus prevent
by its presence the others from reaching this point leading these units to all of
them. jostling endlessly to reach their destination. The algorithm is quite simple
and defines a different destination for each unit. The only problem I had to face
was the case where we did not select a multiple of 5 units, indeed the rows being
5, the formation was relatively ugly and especially if one selected a single unit it
did not go to the desired point but a few centimeters above as it started the
formation. So I modified the algorithm so that instead of forming a line in the
order 1 2 3 4 5, it forms it in the order 5 3 1 2 4.

Figure 18 - Training

Camera controller
It is one of the first algorithms that I implemented because it is essential and
simple. By default, the camera is oriented 60 downwards to have a fairly general
view of the game, but still providing a certain depth. The rest is simple, if we
press the classic ZQSD keys or place the mouse on the edges of the screen, we
will be able to move the camera. Another feature implemented later allows,
thanks to the mouse wheel, to zoom the camera in a way, in fact the camera will
approach the ground and reduce its angle of rotation so as to be almost
horizontal. This view is more aesthetic than anything else because it is not very
practical but o ers a more cinematic and epic view of the game.

17

2.4.2 Managers

I named all classes with a singleton manager. This single tone makes it
possible to limit the number of instances of this class to one and to make it
accessible by absolutely all the other scripts. These algorithms are generally
essential and require recurrent access from other scripts.

Chat Manager
This program, implemented quite late because it is not essential, allows general
management of all messages sent by players. The visual part of this algorithm
will be detailed later in the report. Concretely, each time a player sends a
message it will be stored here thanks to 2 pieces of information, the player who
sends it and its content. Then it will then be sent to all the other players in the
game thanks to an RPC (see multiplayer game).

Instance Manager
This makes it possible to make the link between various local actions and multiplayer
information. At the start of the game, he will retrieve the current player information
thanks to his custom properties (see multiplayer) defined in the waiting room (team,
race, color, starting coordinates). Then he will instantiate the starting troops with the
right coordinates. This manager will then manage the notion of failure which will
occur when a player no longer has a unit or the case where a player disconnects
leading to the disconnection of all the others.

Player Manager
This manager will manage everything that appeals to resources, it is in fact here
that we add or remove the resource and that we find the functions allowing to
pay for constructions or the production of units. It will also manage the di ff
erent space stations so that units such as Constructors can bring their resources
to the nearest space station.

2.4.3 Game

Gameresource
A Gameresource is simply a resource, minerals, energy, and food. It simply
contains its name, quantity, and various methods of modifying its values.

Population

18

This particular GameResource manages the population. It is made up of a
current maximum population and a current population. If the current population
is equal to the current maximum population then no more mobile unit can be
created. To increase this maximum, houses must be built.

Placement
This is the building placement system. It is broken down into 3 subsystems:

Raycaster:
A Raycaster will send a Raycast down and say whether or not it meets the
ground, if not or if the ground is either too close or too far away then a boolean
variable will signal that the cell on which the Raycaster is located is no. is not
available for construction.

DetectionCell:
This is composed of 5 Raycasters arranged like the points of the five on a die so
as to be able to test the square fairly precisely. A DetectionCell represents a
square on the Map and will observe each of its Raycasters, if at least one of them
shows up as not available for construction, the starting square colored green will
turn red.

PlacementGrid:
A PlacementGrid will be generated when we want to place a building, it will then
obtain the size of the building in squares and will generate as many
DetectionCell as the building takes up squares. If at least one of the
DetectionCells is red then the PlacementGrid will prevent the player from placing
their building. The center of the PlacementGrid corresponds to the mouse
pointer but with the box system.

This system required some thought before being developed, I could have
contented myself with an algorithm simply preventing two buildings from being
placed one inside the other, but I had more ambition and wanted a system.
which shows the player which square (s) are problematic. Being in space the
distance between the ground and the Raycaster is useless but the system is
there and very functional. On the other hand, the box system is an artifice. There
is no box strictly speaking but simply a calculation which will create a modulo of
coordinates on which a building can be placed. For example if the modulo is 5,
and the player places his pointer at x = 12 then instead of the center of the
PlacementGrid being at x = 12 it will be at x = 10, if the pointer is at x = 13 that of
the PlacementGrid will be at x = 15 and so on.

19

Figure 19 - Construction system

Tasks
The Tasks system has been developed especially for buildings to give them the
ability to perform tasks as the name suggests. At the beginning I wanted to
create several types of tasks, those of production and those of improvement. In
the end, only the first was implemented, the other having become the skill tree.
A production job simply produces one unit. Each task is paid for in resources and
takes a certain time to be carried out.

Although simple to explain, this algorithm took me a lot of time because it mixes
up a lot of previously developed systems, it was necessary to correlate
everything and avoid creating bugs. All while updating the interface to give it the
right information.

2.4.4 menus

Main Menu and In-Game Menu

Once the heart of the game was well underway I wanted to incorporate
multiplayer quickly, but first I had to create menus for it. Given their large
number, I had to create a very general algorithm allowing me to simplify as
much as possible the implementation of a new menu. Indeed, beyond doing
things right for the player, you also need to create tools that are powerful and
intelligent enough to make the developer's job easier.

20

Main Menu :
Allows you to launch the single player, multiplayer mode, go to the options, see the
credits, or even quit the game. Single player menu:
Allows you to choose between campaign mode (still absent) and quick game
mode.

Multiplayer menu:
Allows you to choose between joining a game or creating a new one. To join a
game, just type in its name and click on Join.

Game creation menu:
Allows to create a game by choosing the map, and if the player creates a multiplayer
game to give a name to the game as well as to define the maximum number of
players (including AI).

Options menu:
Allows you to adjust certain parameters. It is sorted into several categories:
- Gameplay: Allows you to define the speed of the camera scrolling with the keyboard and
the mouse, to deactivate the scrolling with the mouse and to activate or not the help
bubbles. - Nickname: Allows you to choose your nickname

- Video: Allows you to choose the resolution, activate or not the full screen, and
choose the level of graphic quality of the game.

- Sound: Adjusts the volume of the game

I reproduced more or less the same menu during the game, they only miss a
few options like changing the nickname because it makes sense that it is
impossible to change it during a game.

AlliesMenu
The allies menu allows you to send resources to your allies. It uses the RPC
system (see multiplayer).

loading times
The loading times were added recently and are still unnecessary for now.
Indeed, since the game consists of only simple polygons and solid textures, the
loading times are barely noticeable, but the system is there and operational. It
uses Unity's ability to be able to load a scene while keeping the current one
usable, and for the loading progress bar, Unity provides us with a variable
between 0 and 1 giving this progress.

21

2.4.5 Interface

In this subsection I will explain everything that appeals to the interface during
the game.

Cards
I named the little cards for each character selected as Card. The panel which
contains them then allows each unit to display an image of its model as well as
its life gauge to have an overview of the selected troops. Its usefulness is not
only visual since clicking on one of these cards allows you to sub-select a unit.
This means that the actions available will be carried out on the underselected
unit and not all the troops.

Figure 20 - Cards

Cat
The visual part of the cat is divided into 2 panels: The first does not offer any
interaction, it is located on the left of the game screen and displays the
messages sent but only keeps them for a while, after a few seconds the
messages disappear. The second is accessible from a menu and displays all the
messages sent without ever deleting them. It o ers a text box to be able to send
messages.
The other method of sending messages is to press enter in the game which
brings up a text box to write your message.
These 2 panels use the Chat Manager which serves as a kind of message bank.

22

advancement bar
It is simply a progress bar which appears when selecting a building under
construction and which gives the progress of this one.

panel description
Appears when you hover the mouse over a button to construct a building or
instantiate a unit. It contains the name of the object to be created, its resource cost
as well as a small description of the object.

Figure 21 - Panel Description

Help
This is a small panel that will display the usefulness of certain buttons when
hovering the mouse pointer over them because some buttons use icons which
can be confusing. This panel can be deactivated in the options. It occurs in
particular when the mouse is hovered over the icons on the minimap.

Figure 22 - Help bubble

jobless button
This button is used to indicate whether or not certain manufacturers are
unoccupied, and if so then clicking on this button selects that unit and moves the
camera above it.

23

Monodescr
This panel appears when selecting a unit and only displays its name for the
moment, the final purpose being to display other information specific to that
unit. For now, we only see the quantity and type of resource transported by a
manufacturer.

Portrait
The portrait shows the life of the underselected unit and its model. This is not
the display of a model from the game's Assets but of a camera which is placed in
front of the under-selected unit, the portrait simply shows what this camera
sees.

Figure 23 - Portrait

Resources
When launching the game, the resource panel will generate as many panels displaying the
name and quantity of resources as there are resources added to the game.

Tools
The tools panel is one of the most important features of the game. A tool here
refers to a button associated with a unit and which will perform an action with
this unit. For example: The one to move the unit, to stop it, to display the
construction menu, to instantiate a unit, to go and repair a building and so on.

This panel going to be used very often it had to be well coded, to be powerful
enough but also easy to use for the developer. In fact, for some particular tools
it is necessary to create particular scripts but for the units it is enough to drag
and drop the prefabricated of this unit in the list of tools of another unit so that
it can generate a tools which create a Task

24

instantiation.

Figure 24 - Tools

fl oating life bar
For each instantiated unit, a fl oating life bar will be generated and will show the
life of a unit when the mouse is passed over it.

Figure 25 - Floating Life Bar

minimap The minimap (or mini-map) is actually a simple camera placed
above the game and which gives an overview. Each unit is assigned an icon
which will only be displayed on the camera. It also contains other features:

- If a unit is in the fog of war it will not appear on the minimap

25

- A left click on the minimap moves the camera so that it looks at the place where the pointer is

- A right click moves to the point on the minimap
- A rectangle indicates the area observed by the camera
- A button allows you to place a marker on the minimap, all the players of the team will see it too

- A button allows to display or not the bottom of the minimap
- A button allows to display or not the units
- A button allows you to activate or not the system for training troops
- A button allows you to change the management of the display of colors according to the
team.

Figure 26 - Mini-Card

Selectionbox
This is the rectangle that will show the player which zone he is selecting.

TemporaryMessage
Placed at the top right of the screen, this area will display temporary messages
to justify the player why he cannot yet perform an action. For example if he tries
to build a building when he does not have enough resources.

26

2.4.6 Units

In this sub-part I will explain everything that appeals to units in general,
more specific units such as buildings or mobile units will be detailed later in the
report.

Interactable
This is the basic unit, it has no method or attributes, it only de fi nes that we can
interact with this object by right clicking on it.

Selectable
It inherits from Interactable, and makes it possible to make a unit selectable. In
fact, this class defines the notion of Highlight (when you pass the mouse over a
unit without selecting it, a colored circle will activate to show that the selection is
possible) and of selection (the circle is opaque). This circle will have a di selon
erent color depending on whether or not the unit belongs to the player, his team
or the enemy teams. The class also contains the name of the object as well as its
cost, description and the time required to produce it.
This class also makes it possible to generate the field of vision, that is to say how
far the fog of war (see fog of war) is dissipated around this unit.

Figure 27 - Normal ted

DestructibleUnit
It inherits from Selectable, and makes it possible to make a unit destructible. In fact,
this class defines the notion of the life and death gauge. This is where the life of a
unit is defined, where it can be healed and destroyed.

Resource Unit

Figure 28 - Highligh-
Figure 29 - Selected

27

She inherits from Interactable. This unit contains a certain amount of a certain
type of resource and is destroyed when empty.

2.4.7 Buildings

Constructedunit
It inherits from DestructibleUnit, it is the base building. It has a Task System (see
Tasks), and it has an InConstructionUnit attached (see InConstructionUnit) as
well as a model of the building but all green and transparent (called Ghost, it is
used to display the building when it is desired. to place). Another system is
attached to it, that of repair, in fact if the building does not have its maximum
life, then one or more builders can be sent to repair it.

Inconstructionunit
It also inherits from DestructibleUnit, each ConstructedUnit has an
InConstructio- nUnit, it is the same building except that it is the version under
construction, this makes it possible to manage scripts with totally di ff erent
operations independently and therefore more simply.
It has roughly the same repair system as the ConstructedUnit but for the
construction of the building itself.

production unit
This building will produce units, its speci fi city and have a rally banner, ie the
player will place a banner attached to this building and the units produced will
automatically try to join the banner once instantiated.

House
This building increases the maximum population.

Radar
This building can be built a limited number of times (this number can be
increased in the skills tree). It does nothing in particular except warn the player
when an enemy unit enters its line of sight. A voluntarily larger field of vision
than other buildings.

Space station
It is the main building of the base, it is the place where the miners will drop off

28

their resources. It is he who makes it possible to produce builders.

EnergyFarm
This building continuously generates Energy.

Farm
This building produces food which must then be collected by the builders and
brought to the space station.

Asteroid
This unit inherits from ResourceUnit, it contains a de fi nite number of ores (one of the
game's resources) and self-destructs when everything has been mined.

Laboratory
This building continuously generates technology points (for the skill tree).

Movable unit
This class inherits from DestructibleUnit and unlike the building it is
characterized by the ability to move. It can also be hacked (The unit now belongs
to the hacking player).
Each mobile unit is equipped with the patrol system, thanks to a Tools, a mobile
unit can be told to go back and forth continuously between its current point and
the place pointed by the mouse.

Builder
This mobile unit has a lot of features:
- Harvest: She goes back and forth between her place of harvest and the nearest space station, bringing back resources each time

- Construction and Repair: She can build a building or repair it (the more
constructors who build / repair a building, the faster it goes)

This unit took me a lot of time and thought to organize myself well and that the
various associated behaviors do not influence each other at the risk of creating
bugs. (For example, if a builder was ordered to construct a building while
repairing another, the 2 behaviors must not be mixed up otherwise the unit
would have had a chaotic behavior). Each module is simple but managing all
these modules is more complex.

29

Mobile Medical Station
This unit heals surrounding mobile units.

Hacker
This unit can by de fi nition be hacker of other (this makes them change camps),
but also many other functionality which will be unlockable in the tree but which
are not yet incorporated.

Basic troop
Combat Troop by default its attack and defense are balanced.

Light Troop
Combat troop, its attack and defense are weak but it is very fast and consumes
very little population.

Bomber
Slow but robust combat unit that sends out very powerful missiles but at a low
rate.

Cruiser
Unique unit very slow, very resistant, but which improves the surrounding allied
units and once the right skill is unlocked, it acts as a relay for the instantiation
buildings of ships. That is, the ships created will appear at the level of the
cruiser.

2.4.8 Graphics

Fog of War
The principle of fog of war is simple, the game map is covered with a fog, each
unit has a field of vision in the form of a more or less large circle and which will
dispel this fog. This system is actually made up of 2 systems, one is purely
graphic and the other is only programming oriented.

Graphically it is about a layer which darkens the game and thanks to the shader
system integrated in Unity, we can simulate that an area is lit. Technically, when
an enemy unit is not in the field of view of any allied unit, then its textures,
model, minimap icon are disabled, the unit is invisible.

This system gave me a lot of problem because it uses the shaders that I

30

know very little and who do not code in C # but Cg HLSL which I do not know. In
addition, very few forums and tutorials exist about the fog of war. It took time
and research for all the visual part, the code part being more traditional.

Figure 30 - Fog Of War

2.4.9 Waitting room

This part will detail the functioning of the Waitting Room, that is to say the
waiting room in which the players wait for others to join them or for the creator
of the game to launch it. This room will independently manage each player from
the moment he enters the waiting room. First of all a parameter panel visible to
all players will be displayed, only the player who owns it can modify it, this panel
will allow the player to define his class, his team, his race and his color. . The
creator of the game can add Bots (Artificial Intelligence) and start the game after
all players have checked the box ready. At the start of the game,

2.4.10 Skill Tree

Beyond this, thanks to the construction, we wanted a notion of progress to
be present in the game and what is more that allows players to differentiate
themselves so that the winner is not only determined by the strategy in combat
but also throughout the course of the game. We have

31

Figure 31 - Waiting Room

therefore opted for a skill tree. This is divided into several distinct sub-trees,
each dedicated to a particular sector which are:
- Light attack
- Heavy attack (bomber)
- Research and development (Hacker)
- Cruiser
- Economy (Construction, resources)
- Defense (turret)
Each of these trees therefore makes it possible to unlock units or skills but also
to improve certain statistics such as the construction speed or the damage per
second of a unit. In addition, these trees are restrictive, that is to say that when
several skills are at the same height of the tree, choosing one of them will block
all the others. The goal being that at the end of the game, there is very little
chance that the players will have made the same choices and end up with the
same base and the same army. Purchasing skills costs technology points.

2.4.11 Online

Photon
To manage multiplayer in our game, we have chosen to use the Phon PUN 2
asset in particular for its accessibility but above all because the tool provides us
with a server hosted on the Photon servers which o rent

32

Figure 32 - Skill Tree

much better stability than if we had hosted it ourselves.
I followed the advice of InfoSpé by implementing multiplayer very quickly. PUN o
ff ers several methods to synchronize the various elements of the game online,
first of all we can choose to send a stream which contains various variables to be
synchronized, otherwise we can use the RPCs which allow to execute a function
on all of them. instances of the same object.

2.4.12 Assessment and Outlook for the next defenses

I am very satisfied with my work, compared to the schedule I am ahead, a
calculated advance because my work rate on the project will have to drop as the
exams approach because we will have a lot of work. The idea was to have
developed a very large majority of the game mechanics for this defense in order
to leave only the combat system and especially the artificial intelligence for the
others. The latter will prove to be a very big challenge for us since we have no
experience or knowledge in the matter. So for the next defense, I plan to have
done the combat system as well as to have started well in Arti fi cial Intelligence,
at least from a theoretical point of view.

33

3 Conclusion

To sum up, the basics of the game are there and the next defenses will see
the arrival of artificial intelligence as well as the textures, models and various
visual e ff ects of the game. From the first, we took advantage of the start of the
second semester to work as much as possible so as to have less work when the
other classes get tough.

34

