Project Report - Year Zero

Bearth Studio

May 17, 2019

timothee.ribes nicola.brankovic

enguerrand.vie axel.ribon

Contents

1

Introduction
1.1 Presentation of the Group.
1.2NameoftheGroup...........covviiininn ..
1.3 Bearth Studio and Year Zero logos.
1.4 Members of Bearth Studio.
General presentation
21 Presentation. i,
21.10rigin. oo
212Nature. o
2.1.3 Purposeandinterests............,
2.1.4 Year Zero in the history of video games.
22 Functional............ ... o ool
2.2.1 Contextual reminder.....................
2.22 Gamefeatures............ ...t
2.23 Progressofagame................. Technical and
2.3 Methodological Aspects.............
2.3.1 Material resources.ootn Intellectual Means.
24 EconomicMeans.....................
2.5

Project breakdown

3.1 Task progress schedule
3.2 Table of distribution of tasks. . ..
3.3 Development on distributed tasks.

3.3.1 Timothy. .

3.32Nicola..............
3.3.3Enguerrand...........

3.3.4 Axel.

Development on distributed tasks

4.1 Timothy........
4.1.1 Tutorial. .
4.1.2 Website. .
4.1.3 Dubbing.
4.1.4 Mission. .
4.1.5 Sounds. .
4.1.6 Balancing

N oo

00 00 N NN

10
10
11
12
12
12
13

14
14
15
16
16
16
17
17

18
18
19
19
19
20
20
21

4.2

4.3

4.4

4.5
4.6

Nicola ...

421 Website............. ... oL Tutorial.
422 ..o Single player mode.
423 ..S5CENAMO0.....cvviiiiiii i
424

Enguerrand.

43.1 Creationoflogos..................... Ma
4.3.2 Design of the graphicidentity............

433 . Loading screen..........

4.3.4 Adding graphicresources.............

435 GAamMesSCreeN.......ovvvuiinevnnennnn. 3d models.......

4.3.6 Button animations..................

437 The buildings..........
4.3.8 Improved visibility.

4.3.9

4310Theunits..........coiiiin ...

4.3.11

Additionalmodels.

441 Website............. . Discord Download.

46.1Controls. ...
46.2Managers.
46.3GaMe.t
46.4MeENUS. ..ot e
465Interface. ...,
46.6Units. ...
46.7Buildings.o o oo
4.6.8Graphics. ...,
4.6.9 Waitingroom.ooaun...
4.6.10 Skill Tree.t
46.110nline. ..ol
4.6.12 PreparationforAL
4613IA ..
46.14Combat. i
4.6.15Debugging. ...t

4.6.16 Miscellaneous improvements.

4.6.17 Groupwork.
4.6.18 Optimization........................
4.6.19 Minimum and Recommended Con fi guration

21
21
22
22
22
23
23
23
24
26
26
27
27
31
33
33
36
36
39
39
39
40
42
42
44
46
51
52
54
55
55
56
57
58
60
61
61
61
62
63

4.6.20 Balance sheet

5 Conclusion

65

1 Introduction

1.1 Presentation of the Group

Bearth Studio is a video game development studio born on December 16,
2018. Composed of four members, its only claim is to carry out its first project,
consisting of its first game: Year Zero.

Coming from diverse and varied backgrounds, its members have di ff erent
cultures and educations. Within Bearth Studio, we believe that our di ff erences
contribute to a greater creative ambition and to a broader vision of our project
as a whole, so that it is enriched by it. We will then be able to resolve the
technical and artistic challenges that will arise during the development of Year
Zero. Currently having only one project in progress, we remain focused on this
one but it is always possible that in the future we will work together again on
other projects so that Bearth Studio grows and continues to present quality
games, witnesses of the common ambition that its members share.

1.2 Group name

Bearth Studio comes from the contraction of beyond Earth, "beyond the Earth
"and birth, the birth". We then understand the meaning "birth, beyond the Earth".
Closely linked to the name of his first game Year Zero, Bearth Studio
then represents the birth or rebirth of humanity, beyond the known limits of the
Earth. Wanting to name our group in relation to the name and theme of our first
game, finding the name of the latter guided us to determine that of our group.
This is why one only finds its full meaning with the other. The frame was then set
for Year Zero, presenting a humanity that left Earth, seeking to live rather than
survive. This departure is therefore year zero.

We made sure that the name of our group was taken from our first game so that
it was he who defined the first codes of our studio as well as its peculiarities. We

did not want, on the contrary, to find a name that only we could understand and

that would not touch or mark the mind of anyone.

1.3 Bearth Studio and Year Zero logos

The logo of Bearth Studio is made up of three distinct parts. The first is the
one we see at first glance: a stylized planet, surrounded by rings like the planet
Saturn, for example. We then see that a rocket escapes from the orbit of this
planet leaving behind

she a streak of color. The studio's name appears below in a digital, spatial and
futuristic-looking font. The image we have of the logo, presenting our band, is
simple and eye-catching so that the player remembers the studio logo. All of this
having the characteristic of being refined and modern in order to show the main
theme which is that of space, demonstrating the studio's continual propensity to
be turned towards the future.

Regarding the logo of Year Zero, it is about a circle containing in its center the
letter "Y" stylized in a slightly futuristic font which will remain that of our game.
The circle then represents the "0" of Year Zero with the "Y". The colors used are
in the same range as those of the logo of Bearth Studio. A rusty, metallic
appearance has been given to the letter "Y" to match the idea of a future as a
Metal Age. The slightly dirty appearance thus given can make one think of the
old Earth left by its inhabitants in the history of the game.

Figure 1 - Bearth Studio logo Figure 2 - Year Zero logo

1.4 Members of Bearth Studio

Bearth Studio is composed of four members from class C1, from the first
year of the integrated preparatory cycle of the EPITA computer engineering
school.

Group project manager, Timothy Ribes uses all his skills to create real cohesion
within the group, to inspire and support his colleagues throughout the project.
He is in charge of the various sound aspects of the game.

Brimming with inspiration, but also not neglecting the work, Nicola Bran- kovic takes
care of the writing aspects underlying the game and brings it to life for good in

that it will be placed in its context, thus laying down a framework, a story and a
universe. It is in relation to the work of all the other members of the group that
Nicola works.

Mastering some software necessary for the proper development of the graphic
and visual aspect, Enguerrand Vié is responsible for the direction of the artistic
aspect of the game. Having to ensure that each aspect of the game respects a
sort of graphic charter, color codes, shapes, etc.

Having previously acquired some experience with Unity, Axel Ribon helps other
members from a programming point of view or from a game engine
management point of view. Also proficient in object oriented programming. It is,
for these reasons mainly responsible for the main code of the game, which
constitutes the body of the game.

2 General presentation

2.1 Presentation
2.1.1 Origin

Before choosing the content, or even the universe of our game, we had to
determine the genre. Nowadays, many of the world famous games are
FPS, of First Personal Shooter, or shooting games with a first person view,
seeing on the screen what the character being played sees. After a quick review
of our knowledge and capabilities in terms of development, we concluded that
we would not do a FPS because requiring much more resources and time for the
same rendering, compared to a game of a strategy genre. Each member of our
group is passionate about strategy games

in real time : RTS, Real Time Strategy, the idea of making one ourselves
quickly came to us and we all agreed.

As for the world of the game, noting the absence of a real strategy game taking
place in space, we decided to try to fill this void and create our own. It would
then have been easy to reproduce an already existing game in the same
universe but we preferred to recreate one from scratch, taking various
inspirations but especially with a view to making a game in our image, which
contains the mechanics that we wanted, in other words, that we make our own
game.

We wanted to integrate an alien race into our game, drawing inspiration from
insects such as bees with their way of making their hives and of organizing
themselves, or even ants. The whole being seen from a large scale. We also
thought about making our base terrain a sphere so that by moving the camera
in one direction, we would come back to the starting point after a while, but we
abandoned this idea because it could lead to in players motion sickness, similar
to motion sickness.

2.1.2 Nature

Year Zero is a space strategy game in which several teams compete for
supremacy in the universe. It controls buildings that produce units on a map
with fixed boundaries.

The chosen game engine is Unity and the language used is CSharp (C). The art
direction is fanciful and unrealistic in order to give a dark but not shocking tone.
The objective is to make the game all public. The cardboard aspect was
preferred to realism in order to make the atmosphere of the game quite light
but without losing the strategy aspect. However, we wanted to keep a certain
degree of realism in order to keep a dramatic side in view of the history of the
game. From a sound point of view the game is quite epic with great catchy
themes. But he juggles with calmer and more melancholy themes to recall the
desperate condition of humanity. The epic aspect being purely fun and the
dramatic aspect serving to reinforce the intentions of the scenario.

2.1.3 Purpose and interests

A Year Zero session lasts between 15 and 30 minutes on average. The game
combines pure strategy as well as dynamism in order to create a real notion of
progression during the game. The time required for a game may seem long, but
it is necessary to give players time to strategize

Figure 3 - Cartoon but serious aspect
Endless Space 2

and install its base.

We also believe that speeding up the games would certainly make the game more
accessible but also less demanding. We wanted to create a game that was easy to
understand but difficult to master so that the player would derive real satisfaction
from defeating his enemies.

2.1.4 Year Zero in the history of video games

Year Zero is a real time strategy game. The genre has already been around
for almost 40 years with the game War of Nerves !. But this one has
democratized and renewed to find its current form with Warcraftreleased in
1994. Other saga of RTSfamous were born as Age of Empires whose
particularity is to be able to advance in the periods of history as the game
progresses. We can still cite Age of Mythology taking place as its name suggests
in a mythological context. More recently Battle for Middle Earth taking place in
the universe of Lord of the Rings. But in the history of RTSwe especially
remember the saga StartCraftfor its competitive aspect and
Warcraft iii for having added the notion of "Hero" leading a few years later to
the creation of a new very popular genre that is the MOBA, Multiplayer Online
Battle Arena.

2.2 Functional
2.2.1 Contextual reminder

Humanity has exhausted all the resources of planet Earth, abandoning itin
its pollution. It was the scene of many wars leading to the virtual extinction of
humanity. In a last hope, the remaining civilizations set out to conquer the
universe to develop again. The starting point for the conquest of the universe
and the rebirth of mankind is called
Year Zero.

During the main campaign the player will have to fight various battles with alien
civilizations to become more and more powerful and to assert his supremacy. Its
battles may resemble the classic game mode with the management of its base.
The campaign can also be an adventure where the player controls a regiment of
troops but without buildings the goal being to survive until the end of the
mission. Still other missions will require the player to resist for a while in the face
of waves of attacking enemies.

2.2.2 Game features

The goal of the player is to develop his civilization in order to destroy the
enemy team (s). For this he will be able to collect resources in order to construct
and improve his buildings, and thus form an army. The game will be broken
down into two game modes. Single player mode and multiplayer mode.

Single player mode:

Countryside - The campaign is divided into x missions which follow one another. Once the
player has completed a mission, he can move on to the next and so on until he reaches
the end of the game.

The di di erent missions of the game offer various objectives in order to break up any
possible monotony:

- Classic missions reci]uire the player to develop his base as well as his army to

estroy the opponent.

- The survival missions are identical to the classic missions except that it is not
necessary to destroy the enemy but only waves of troops in a given time. The
player is cloistered around his base and cannot attack enemy bases.

- Adventure missions provide a regiment of troops at the start of the game to
the player who will have to use his strategy to cover the entire level while
keeping at least one unit alive.

10

Quick Game - This mode corresponds to the multiplayer mode but offline. The
only di ff erence being that only artificial intelligences can be faced here (See
multiplayer).

Multiplayer mode:

The heart of the game, this mode allows players to try out their strategies
against each other. The only game mode present is the classic mode of the
campaign mode with the difference that the artificial intelligences can be
replaced by real players or not.

2.2.3 Progress of a game

We will describe a multiplayer game. A player must create the game from
the game menu. He must decide on the game card, the name of the game as
well as the maximum number of players. Players wishing to join the game must
enter its name in the appropriate menu to enter the "waiting room".

In this waiting room each player decides on the color associated with him, the
race of his civilization as well as his team. Then they must check the box " Ready
"to allow the player who created the session to launch the game. The players
are then distributed randomly on the map.

Each player then has a space station as their main building. This allows you to
produce builders who build and repair buildings, but also undermine the
player's resources. The station can be improved to become more resistant but
also and above all to be able to unlock new buildings to construct.

The player must also develop his improvement tree which will allow him, via a
resource cost to unlock new units, to improve them as well as to unlock various
production improvements on his buildings.

Manufacturers can therefore mine various resources, particularly on asteroids
present on the map. These resources are necessary for the construction of
buildings and units, but they are not inexhaustible. By dint of being mined, the
asteroids will destroy themselves forcing the player to find others. The player
just has to select a constructor and assign it an asteroid so that it makes round
trips to the nearest space station so that the resource of this asteroid is stored.

There is another resource that is food, not found in space, the player must build
space farms that will raise cattle to produce meat at regular time intervals.

11

Finally, the player must pay attention to the population. Indeed, each unit has a
population value, and the sum of the population values of all the units cannot
exceed the maximum population of the base.

The maximum population of the base will depend on the number of
accommodation buildings present. With a ceiling of 100 which cannot be
exceeded. Other buildings are constructible and in particular to produce di ff
erent types of troops.

Each of its buildings is given a rally banner, so each unit produced will travel to
that rally point. As for defense, the player has at his disposal the possibility of
building defense turrets which will automatically attack enemy troops nearby.
The player can also place sentries that will alert him to the presence of enemy
troops. Because in fact, being in space, the player does not have the possibility
of building ramparts, so he will not be able to take refuge behind but must
prepare his defense in order to survive. Hence the relevance of properly placing
your sentries to give it maximum time before the imminent attack. Turrets can
slow the enemy down but rarely defeat their entire army.

Buildings are not equipped with thrusters and therefore cannot move around on
their own. They are therefore in orbit around the space station.

2.3 Technical and Methodological Aspects
2.3.1 Material resources

We used a variety of materials to develop our game. So Visual Studio was
used for the code part, Blender for the 3D modeling, Photoshop for the design
and Git for the " versioning " of the project. Everything was put together to build
the game with Unity. We have 4 laptops at our disposal as well as the EPITA
premises. For our research we used the Google search engine. EPITA provides us
with editions of Windows 10 as well as an O ffi ce 365 license which we use to
organize ourselves schematically on the construction of the game.

2.4 Intellectual Means

To help us during development we have access to MSDN for everything
concerning the C language. Unity provides documentation for its use and we
also used a lot of forum topics already created and solved. These forums are
mainly from Unity sites and

12

StackOver fl ow. These resources allow us to benefit from the experience of
others to learn faster. We were also able to use explanatory videos on certain
aspects of Unity that had not been mastered or on other software that we had to
use.

2.5 Economic Means

The game is not monetized in any way. Everything is free with no additional
paid downloadable content or subscription or " Jlootbox ".
We believe that the success of the game alone would be a reward and if so, an
advertising showcase highlighting the studio.
The base game is not paid for the simple reason that it is the result of a school
project and we do not believe that this type of project should be paid.

13

3 Project breakdown

3.1 Task progress schedule

Support task Defense 1 Defense 2 Defense 3

Graphics
His

Menu

Network

Al

Game mechanics

14

3.2 Table of distribution of tasks

Troops

Timothy Nicola

Enguerrand

Axel

Buildings

Menus

Interface

Trailer
His

Sound effects

Music
Interfaces
Main Menu

XXX X] X

In-game menu

User interface

Controls
Network

Lobby

Online
Al
Bots

Automatisms
Game mechanics
Selection

Resources

Combat

Construction / Production
Content
Map

Countryside

History
Other

Discord

|

|

|

|
_

|

|
I
L

Site

3.3 Development on distributed tasks
3.3.1 Timothy

Not presenting any particular quality, I devote myself to the role of project
manager aiming to help my colleagues as best as possible thus facilitating
mutual aid, communication and cohesion which are fundamental principles for a
group project. However, I play the guitar and will therefore use my musical
abilities to take care of everything that has to do with the sound in the game,
that is to say to create an atmosphere specific to the game. Year Zero and
touching for the player with adapted music, with a futuristic tone but also with
the tension that this kind of game creates throughout a game. As part of
learning C # at EPITA, being able to apply it in a concrete context of this game in
subjects allows me to deepen it and discover more complex subjects. In fact,
with Nicola and Axel, we are going to have to code sufficiently powerful artificial
intelligences so that they can give difficulty to the player alone without
exceeding him too much. Finally, once the game is functional in its multiplayer
part, with Nicola we will have to script parts to make it a solo adventure that
would seem minimalist compared to professional editions of this genre, but will
still allow us to express the own universe. Year Zero
developed by the e ff orts of the whole group.

3.3.2 Nicola

Being a big consumer of real-time strategy games (RTS)I dedicated myself
to game mechanics and Al to make our game fun to play and balanced. A RTS Often
requires performing multiple actions at once, allowing players to order buildings
or units to perform multiple tasks one after the other, quickly, is a key part of the
gameplay of a strategy game. Thinking about how the game's mechanics work
and transcribing them into an algorithm and then into C # is enriching and
pushes our team to constant mutual aid and to debates on the limits of this
automation between Axel, Timothée and me. Also taking care of the campaign
and the history of our game, I will have to work hand in hand with Enguerrand
and Timothée in order to provide a certain coherence with the musics, the
themes and the designs. Our goal is to give a soul and a unique atmosphere to
our game in order to provide a unique experience for players,

16

3.3.3 Enguerrand

Possessing above all qualities of graphic work, my work in the project Year
Zero will be particularly focused on the graphic aspect of the game. I am in
charge of all the 3D modeling with regard to the 3D models of the units and
those of the buildings. Helped by Axel, I will also have to take care of dressing
the game interfaces including menus, buttons, interface in a part etc. The whole
in order to create a futuristic, spatial atmosphere, with obviously the colors
which relate to it. The same work will be done in parallel on the menus of " Jobby"
multiplayer. I will also be in charge of a programming point of view, of the whole
combat system of our game, helped this time by Nicola. It will then be a question
of making the units interact with each other, so that the combat is alive and
dynamic. One aspect that combines programming and graphics is the dynamic
generation of environments, of the game map. Wanting to integrate a system of
random generation of maps so that the player never tires of replaying a game of Year
Zero, I will also be responsible for developing such a system.

3.3.4 Axel

My work in the team has been above all algorithmic. I took care of certain
mechanics that my colleagues relied on to do their work. So I was responsible
for providing them with their own code and being able to explain it to them. I
think that communication is essential to be e ffi cient and productive and my
work has illustrated this need in the sense that it guarantees that we exchange
on our work. In addition, my work also included the interface with the user and
therefore invited me to put myself in his shoes and ask their opinion of those
around me. Although very abstract at first glance, my tasks demanded both
technical and social qualities.

So I was in charge of the unit selection algorithm which is the pillar of the game
in the sense that any added content requires unit selection to be able to be
tested.

I was also responsible for the development of the menu code. This task may
seem simple at first glance but the goal of a developer is not only to make the
game playable but also to facilitate the work of others by coding a very adaptive
and easy to use system. Everything had to be developed so that once the
algorithm is finished there is no longer any need to touch the code but only the
interface and in the simplest and fastest possible way. I was also in charge of
what we called the automatisms. These are light

17

notions of artificial intelligence in units. We can for example cite the patrol
system, the reactions of units when enemies approach or their ability to mine
and bring ores back to the space station. The notion of intelligence being too
weak to be called artificial intelligence and the fact that these reactions are
totally dissociated from the actions of the player, we preferred to dissociate
these two parts.

However, I was also in charge of the artificial intelligence of the players
controlled by the computer. This was my most difficult task because I had no
experience in this area and the Al in a strategy game is much more complex
than in a majority of other types of games.

I also developed everything related to the production of units and buildings,
ranging from the display of the cost of these to the production through a mode
of placement of building in the base, as well as the operation of the associated
interface. This is a complex task because all these systems fit together and
therefore modi fi cation of one of these systems affects the others.

Another part of my job has been to implement multiplayer. And all that it implies
to know the menus to create or join a server as well as the waiting room where
the players can choose their race and their team. But multiplayer has mainly
been implemented throughout the game and in the management of the game.
It is also a massive work in terms of optimization to avoid possible latencies
during the game.

To sum up, I took care of the multiplayer, the unit selection, the interface from a
code point of view, the construction of its base, the management of the units as
well as their production and their capacities.

Finally I took care of the combat system.

I am above all a coder and not an artist, which is why this aspect of the creation
of the game is not attributed to me.

4 Development on distributed tasks

4.1 Timothy

My work as a project manager is between the di ff erent areas that we use,
while being focused on the sound aspects but also the part with one player.

18

4.1.1 Tutorial

The tutorial consists of a scripted part in which the player must perform the
actions requested to move forward while understanding and learning the
mechanics of the game. The first difficulty that arises in this kind of exercise is to
put oneself in the player's shoes and for that to forget as much as possible his
knowledge and habits in relation to the game on which we play, or even in
relation to the whole genre. Likewise, we have to get him to understand the
actions he has to perform and for that we have decided to display messages and
pause the game while the player reads and can move forward at his own pace
with his mouse. We have chosen to make a simple tutorial which explains only
the concise basics of the game in order to leave some experience of discovery
and to do something very light that can be replayed very quickly if necessary to
remember the main workings of units and buildings. . On the technical side this
consisted mainly of using the tools set up for the operation of the game and how
to link them together by a script that executes each step to be performed. This
requires communication with Axel for the understanding and sometimes the
adaptation of the code, but also the graphic adjustments of Enguerrand which
allow the game to always remain aesthetically coherent. It is therefore our ability
to work together on the same elements that is brought into play at this time.

4.1.2 Website

For my part, I have never taken part in the design of a website, so I
particularly worked on the aspect of rendering and functionalities with Nicola
who already had skills in this area.

4.1.3 Dubbing

The set of music and sounds that will be an integral part of the game,
especially during the games and the various interactions of the player and the
actions of the units themselves, must be developed for the next support at the
same time as the internal graphics of the game. In addition, units will have
voices that respond to orders. For example, during an attack order given to a
vessel, we will hear "attack". In addition, the texts and dialogues of the campaign
will be dubbed to really create a story with a narration corresponding to the
scenario of Year Zero.

19

4.1.4 Mission

The mission is part of the single player experience offered by Year Zero and
follows on from the tutorial that must be completed to access it, and will present
the most attractive mechanics in a real-time strategy game, combat whose
operation and implementation are detailed in the work of Axel. The enemy
therefore does not yet have any economic or production buildings, and the
player can concentrate on the simple fact of getting rid of the units which are
going to attack his base by following the instructions introduced by the narrator.
On the other hand, an adjustment work will have to be done with the rebalances
of the game so that this part remains fairly simple to perform for the novice
player. Finally, this mission also aims to introduce the scenario by making the
first contact between him and the antagonist who sends troops to destroy him.
In addition, another endless mode has been added, it is a mode that we had
planned to add and which is similar to this mission in which the player will
therefore once again face waves that do not will not rest and will repeat
themselves endlessly, always being stronger to constitute a challenge to reach
the most advanced waves.

4.1.5 Sounds

At the same time, we had to continue to develop the sound atmosphere of the game, already for the voices of the
characters who arrive as the story progresses, which forced us to do audio editing using the Audacity software. and for which
we have chosen to use our voices despite our lack of experience in the field of dubbing. We have realized the diversity of
professions involved in a game. We therefore hope to be able to be serious in this area but still leaving our trace through our
voices as modified as they are. We therefore take care to prepare the replicas with a certain idea of the tone they should have,
then we carry out tests until we have a relevant version from which we then remove the noise and to which we add height e
ects to stick to the character who must be embodied. Too, I made sure that the musical aspect is functional in the game, that is
to say that we can launch the musics according to the moment, that they do not overlap, nor restart or cut themselves
according to the environment changes like joining a game or changing menu. In addition, so that the music in this game is an
integral part of the game experience I thought of, better than making a list of random sounds that play as you go through a
game, combine their atmosphere with state of the game. In fact, rather quiet music will be played at the start of the game, then
as the player unlocks nor do they restart or shut down depending on changes in the environment such as joining a game or
changing menu. In addition, so that the music in this game is an integral part of the game experience I thought of, better than
making a list of random sounds that play as you go through a game, combine their atmosphere with state of the game. In fact,
rather quiet music will be played at the start of the game, then as the player unlocks nor do they restart or shut down
depending on changes in the environment such as joining a game or changing menu. In addition, so that the music in this
game is an integral part of the game experience I thought of, better than making a list of random sounds that play as you go
through a game, combine their atmosphere with state of the game. In fact, rather quiet music will be played at the start of the

game, then as the player unlocks

20

units or technologies, the sounds will be more and more energetic with the aim
of arriving at an epic framework for the great endgame battles which will involve
many units.

4.1.6 Balancing

The balance of a strategy game, even in its less advanced version, is a main
concept, so that the various units form a whole. It allows each ship in our game
to have its place and its usefulness either by having advantageous statistics for a
higher cost, or lower but with more powerful spells. Achieving a perfect balance
would require data analysis on a huge number of games and players, which is
why we have relied on personal group practice sessions which will have to be
pushed further for the next defense in order to continue to improve balance and
a good, interesting experience. For this we have created a table gathering all the
units to which we have assigned the various statistics: attack speed, damage,
range, health points, speed and their cost in the three resources of the game. To
this we have added coe ffi cients to each of its values and grouped them into a
value specific to the unit. Our goal then was for all units to have the same value
while modulating their di ff erent characteristics, but we ended up with
something where the values tended to increase with the end of the game
because we had neglected the research to be done through the game. 'skill tree
necessary to obtain these units which will be balanced for the next defense with
the project of having a complete playable and pleasant course of the game.

4.2 Nicola
4.2.1 Website

Not being specialized in the creation of Internet sites, I decided to use the
Wix tool in order to provide a clean result. I wanted to keep the theme of the
game in the website, so I reused one of the dominant fonts in our game and the
menu background image. I then followed the plan proposed in the Project File,
and therefore incorporated the download links of the Specifications, the defense
report and the "lite" version of the game, and a complete presentation of
members of Bearth Studio. However, my capacities as a graphic designer and
my good taste being only subjective and limited, I then gave way to Enguerrand
who took charge of finalizing the website.

21

4.2.2 Tutorial

The tutorial aims to present the basic mechanics of the game, it sets the
atmosphere of the game, and gives the main keys to victory for an RTS. During
this, the player will be presented how to select the units / buildings but also the
base buildings and their utilities, the use of the Builder which is the construction
/ harvest unit, the combat units and how to create them, how to collect
resources, how to use them and finally the functioning of the SkillTree, original
element at the center of the gameplay of Year Zero. In order to force the player
to listen to the instructions of the tutorial, we had to limit the actions that this
one can carry out, and to verify that the requests of the tutorial are satisfied
before continuing. The tutorial, being one of the first experiences of the game
that we have been able to have,

4.2.3 Single player mode

The bases of the single player mode having been implemented for the defense
two, we decided, with Timothé to provide an outcome to the Scenario of Year Zero.
This time, the mission is intended to be longer and more complete and will once
again be doubled. Allowing Year Zero to have a complete scenario is an essential
brick, among all those which allow it to be at the level of current video game
standards. In the new missions implanted, this time, the player will have to fight
against the artificial intelligence of Year Zero, and will aim to destroy all the buildings
of the enemy. Everything is scripted and o ff ers aids and indications to the player in
order to make him beat our very competent AL

The single player mode in general has also been revised, especially in terms
of balancing, so that the difficulty follows the player's progression curve.

4.2.4 Scenario

Following consultations with the group, the Year Zero Scenario, presented at
the first defense, has been modified. This one can be found in the promotional
video for the game, but here's a synopsis:

After the slow and inevitable destruction of the earth by man, he was forced
to orient himself towards the heavens for his survival. Unfortunately space is far
from uninhabited, and humanity is forced to meet many challenges. Among
them, an alien race having conquered many systems, extremely aggressive, it
can adapt to all environments, but the most irritating? She can take possession
of the bodies of your friends, your brothers in arms,

22

your leaders, your family. . . The fights are almost permanent and the man has
nowhere to settle. Humanity is near extinction, and desperately awaits its
messiah.

4.3 Enguerrand
4.3.1 Creation of logos

Responsible for the visual part of the game, I looked first, when writing the
specifications, on the design of a logo for the game, as well as for the group. A
sort of video game development and publishing studio. Already presented when
rendering the specifications, the logos of Year Zero and Bearth Studio predominantly
contain the colors red, blue and purple in various shades. Wanting to give a
spatial aspect to relate to the main theme of the game, the logos became a
benchmark throughout future design as far as game design is concerned.

4.3.2 Graphic identity design

Apart from the logos, which are only a less visible part than the interface of
the game for example, it was necessary to determine the guidelines of the
artistic direction of Year Zero in order to keep the same colors, shapes and so
on. All in the pretension of wanting to create a catchy and immersive
atmosphere. It is therefore in warm color tones, approaching red, purple and
blue that Year Zero will take shape. The font that we will mostly use is Orbitron
Black for most of the texts and for some titles we will use Space Age.

Orbitron

Figure 4 - Police Orbitron Black

SPNACE ANGCG=

Figure 5 - Police Space Age

23

4.3.3 Main menu

It was towards the main menu that I leaned first. To the already existing
menu, made up of buttons without texture, and the default Unity background, I
added a background which is an image in the space where we see nebulae. I
added the logos of Year Zero and Bearth Studio at the bottom left and right
respectively. Finally I created in Photoshop the title logo Year Zero that I
imported into Unity in order to put it above the buttons.

Not having a precise idea of how [was going to design the buttons, I tried a
few versions with various colors, still creating a button image in Photoshop that
would overlap the Unity button.

Finally, I created a new texture for the buttons that I imported. It turned out
that it stuck well to the bottom and to the rest, so we kept it.

Figure 6 - Button texture

I declined this same texture in several versions in order to integrate as well
as possible in all the scenes of our Unity project and in all the situations where
we were going to need it.

24

Figure 7 - Button for a fill bar

Figure 8 - Square button with rounded
edges

Figure 10 - Rectangle button with
rounded edges

Figure 9 - Hexagon shaped button

Finally, it's towards hexagon-shaped buttons that I'm leaning, wanting to
innovate a bit so that we don't have buttons that seem to be Unity's only by
default. Instead of marking where these buttons redirect, I thought to myself
that it was probably more self-explanatory and also more visually pleasing to put
icons instead of text. We then had a menu that was starting to take shape.

I also added for an e ff ect of immersion within the menu, two layers of stars
materialized by two images containing transparency and stars. I added an
animation to them so that they turn on themselves without stopping. I also
created via a small script, a parallax effect (which we will find later). Parallax is a
way of rendering depth and distance. Here, it is a question of making follow the
movements of the mouse in the main menu to the background image but with a
slight coe ffi cient. The effect is very light

25

a

SINGLE MULTI

PLAYER PLAYER

S B

SETTINGS CREDITS

Figure 11 - Main menu

here it is only visual.

4.3.4 Adding graphic resources

At the end of the first defense, I said to myself that it was necessary to delete
everything that, until then, was by default. It was in this process that I had the idea
of designing a cursor that would replace the one that Windows possesses.

It was then necessary that this cursor can be integrated into the graphic charter
of the game without losing visibility. After several inconclusive tests, often
because the colors chosen made it less visible, I finally arrived at the current
version which is integrated into the game.

4.3.5 Loading screen

Besides the main menu scene, there is a scene that is rarely visible since it
happens very quickly. This is the loading screen scene. It is simple in that it only
consists of the same background as the main menu, as well as a progress bar
and a message that displays.

LOADING ...

26

4.3.6 Button animations

Adding animations to the buttons was necessary to create dynamism in the
navigation within the menus. The animation is the same for all the buttons of the
main menu and its submenus. It consists of the enlargement of the button. So
when the mouse passes over the button, the latter sees its size increase slightly.

4.3.7 Game screen

Global environment
When you arrive in a game, you are in space. It is necessary to have a suitable
environment. Thus the ground from which the units move is encompassed in a Skybox
which corresponds to a sphere whose texture is an image, here of space. The
rendering makes sure to respect a kind of immersion in this sphere and gives
the impression that the depth is infinite.

E ff and parallax
When you move the camera around the game, you only get the impression of
movement if you see units rolling by. This is why I added more than four layers
of stars below the ground, all at di de erent heights so that when moving, the
stars more or less follow the movement depending on how far they are from the
ground. ground or not.

Inteface
Most of my work until this defense has been the design of the interface in a part.
Everything was done in Photoshop and then imported into Unity. I realized in an
image which will constitute the overall interface in the game.

27

Figure 12 - Interface image

In the same way as for the main menu, the action buttons of the units have,
instead of a text, an icon, as well as the texture of a square button (cf: Figure 7).

Figure 13 - In-game interface

There are also navigation buttons above the screen. The texture associated
with them is the rectangular button with rounded edges. The text has been left
for a better understanding of their action and the color has been put on a
golden, yellow which is doing well to the rest of the interface.

To their right, there is a button for the skill tree, with its associated icon. Also to
its right, we find the resource indicators. Originally, they are buttons but we
cannot interact with them, hence their darker color than the others. The color of
the text and numbers has also been set to gold, yellow.

29

Figure 14 - Buttons with icons

Figure 15 - Resource buttons

There are also the minimap buttons, also formed by their texture and an
icon, like all the others made by me in Photoshop. We also find the inactive
constructor button made in the same way. All of these buttons have the same
animation, which changes their color depending on their state. The four distinct
states being: Highlighted if the mouse is on the button, Pressed if the mouse
clicked on the button, Disabled
if we can not interact with the button as well as the default state.

Figure 16 - Button hovered over by the mouse

Figure 17 - Button clicked

4.3.8 Improving visibility

A game in which the dominant environment is space, like Year Zero, often
has dark colors. Texts should be presented in bright colors so that they are
clearly visible to the person in front of the screen. So most of the messages will
have colors like red or yellow-gold. For some they could be even more visible
and it is with this in mind that I applied a black gradient background to them so
that they are even more striking among everything that is displayed on the
screen.

Thus the tutorial messages explaining how to play will be a little more visible as
well as the help messages on the action buttons of the units, which did not
include any help message before.

In addition, some menus have been improved with some graphic details to make
them more dynamic. This is the login screen, and the /obby,

the waiting room before the game starts in multiplayer.

I also applied Year Zero's graphic designs to the menu that can be found
in-game, during a game. You can access it by pressing the shortcut written

31

Figure 18 - Background banner for texts

Figure 19 - Help for unit actions

on the navigation buttons at the top of the screen or by pressing the key

escape.

32

RESUME

OPTIONS

MAIN MENU

aum

Figure 20 - Main menu in a game

4.3.9 3D Models
4.3.10 The units

Year Zero, like any good strategy game, o ers many units. They must then be
dressed so that they can be differentiated. After a lot of research for 3D models
that could match our needs, I found an assortment of resources that will be able
to constitute a major part of the models associated with the units, for those who
will play humans at least. Thus we find no less than fifteen di ff erent vessels,
each of which can be declined in several colors, which will eventually mark the di
ff erent teams with the color chosen in the game waiting room.

Some of the ships present will not be part of the game, we have not fi nalized
them all yet, however the variety of different colors and texture types available
to us give us many possibilities for the game in fi nal version to provide models
in line with the Year Zero graphic charter.

Here you can see up-close images of some of Year Zero's ships.

33

Figure 21 - Year Zero ships in multiple colors

An important aspect of ship models is that they are modular. That is to say
that they can be broken down into several constituent parts. Thus it will be
easier for us to materialize a destruction or even an animation of construction of
these vessels.

Besides these models corresponding to the units themselves, there is a whole
aspect of the units in 3D, which is often forgotten, but we cannot miss it. This is
the set of projectiles that will be fired by the units. It goes from

34

Figure 22 - Modularity of a vessel

simple laser to missiles, to bombs and the like. Besides the laser which is not yet
in the game, since it consists of a particle animation and the latter has not yet
been done, it is not found in this version of the game. Likewise for the other
projectiles since they will be associated with particle e ects, missile reactors,
explosion e ects etc. All this will have to be present in the version of the game
that we will return for the third and final defense which will mark the end of the
project. We are obligated to provide a complete set for this event.

Below are some examples of the models of projectiles of all types that will join
the 3D models of Year Zero.

35

4.3.11 Buildings

In Year Zero there are no less than ten different buildings. Most of them are
of the same type, fixed and relatively similar, and a few other unique ones such
as the radar or the defense turret. Giving models to these buildings is not a
simple task since they must re fl ect the atmosphere of the game, not shatter the
unity of a spatial environment that we find in all aspects of what the game tells
us. shows on the screen. So, I added 3D resources corresponding to modules of
a futuristic if not spatial type which, put together should be able to give us
enough possibilities for our many buildings, so that each one has a unique
model, standing out from others. Most are not yet assigned as I am still looking
for models that might be better suited.

4.4 Additional models

A spatial environment is intended to be empty, but it appeared that filling
this void at least with some additional graphic elements would be a good idea
and would make the environment even more engaging. This is why I added
some asteroids which will take place in the map of the

36

Figure 23 - Example of a modular model

game, in a game. They are only purely decorative, one cannot interact with
them, in particular to collect resources. They are placed higher or lower
depending on the reference level, which is that of the units and buildings, so
that the spatial environment e ect is kept to a minimum and improves the
player's immersion. Asteroids come in several sizes and have different textures
that we will apply to them in order to choose the appearance they have
according to the type of space environment of the game. For example, we can
apply the ice texture to asteroids during a game with an ice space as the chosen
card. This is one of the features that I plan to add to the fi nal set, presented
during the third defense.

37

o

) . Figure 25 - Medium size
Figure 24 - Small size

Figure 26 - Several asteroids

Always in the concern of improving the immersion and the 3D rendering of
the game, I also added 3D resources of space debris. There are many various
debris, buildings or even vessels. Depending on the map, we can find many of
this debris as an element of scenery in the same way as asteroids.

It is important to also note that some of this debris will be used when a unit or
building is destroyed, then we will display the corresponding 3D debris model.

38

Figure 28 - Other debris

Figure 27 - Debris model

4.4.1 Website

I also contributed to the Year Zero website, particularly on the addition of
content within the various sections present.

4.5 Discord Download

Regularly using Discord software for the general organization of the group as
well as for vocal meetings with the members of the group, I chose to add the
integration of year Zero within Discord. That is, when you launch the game,
Discord displays the profile of the person playing the game, that it is playing it. It
is a purely cosmetic and non-essential addition, but it contributes to the image
we want to give to the game, testifying to a certain professionalism that we are
trying to achieve.

4.6 Axel

Here I will present each feature I added to the game, how I felt, the issues
that occurred.
First of all in order to structure my part correctly, I will not present my work in
chronological order but rather by section. The di ff erent systems being
intertwined with each other, I was not able to develop them all one after the
other but by building everything little by little. However, I will keep the order as
chronological as possible.

39

4.6.1 Controls

Selection
Beyond creating the project on Unity, my first task was to develop a unit
selection system. The principle is a simple one, a left click on a unit selects it, but
to this is added the selection of several units which occurs when we perform a
left click on the mouse and then move it to form a rectangle used to select all the
units in this rectangle. I then gave some speci fi cities to this algorithm, for
example, if we select a building we can only select one, if we double-left click we
select all the units on the screen which are of the same type as the one under
the mouse pointer, or again, if we draw a rectangle around units that do not
belong to us, we will fi nally select only one. Too, right clicking on a unit will
perform the appropriate interaction. This algorithm is one of the most complex
that I have been given to develop within the framework of this project as it takes
into account parameters, I had to think it over and rethink it continuously as I
added to it. features.

My first di ffi culty was how I could select the unit under the mouse pointer. After
some research, I discovered the principle of Raycast, this Unity functionality
allows to send a ray from a point and following a defined direction vector and
returns the object encountered by the ray. So I send a ray from the position of
the mouse and directed to the point just below the mouse to access the unit and
thus select it. The multi-selection system is simpler but also much more
demanding, it will go through the list of units and transpose their 3D coordinate
into 2D then select them if they are in the drawn rectangle.

Player control system
As I added functionalities to the game, it appeared to me that a system had to be
created to manage di ff erent control pro fi les, for example when we want to
place a marker on the map we press the button associated and we then go to a
new very simpli fi ed key pro fi le in which a left click on the minimap will place
the marker and a click outside the minimap or else pressing the ESC key will
cancel the marker mode to return to the controls classic. Without this system it
would be complicated to isolate certain functionalities and for example opening
the pause menu would not prevent the selection of units or the movement of
the camera, which poses a problem.

System training

40

This algorithm was not one of our priorities, but its usefulness is indisputable
both from a technical point of view and for the player. In fact, this is a system
allowing you to move your units in a rectangular formation. This system
prevents all the units from trying to reach the same point when they are made to
move because technically only one will reach it before the others and will thus
prevent by its presence the others from reaching this point leading these units
to all of them. endlessly scramble to reach their destination. The algorithm is
quite simple and de fi nes a different destination for each unit. The only problem
I had to face was the case where we did not select a multiple of 5 units, in fact
the rows being 5, the formation was relatively ugly and especially if one selected
a single unit it did not go to the desired point but a few centimeters above
because it started the formation. So I modified the algorithm so that instead of
forming a linein the order 12345, it formsitinthe order531 2 4.

Figure 29 - Training

Camera controller
It is one of the first algorithms that I implemented because it is essential and
simple. By default, the camera is oriented 60 downwards to have a fairly general
view of the game, but still providing a certain depth. The rest is simple, if we
press the classic ZQSD keys or place the mouse on the edges of the screen, we
will be able to move the camera. Another feature implemented later allows,
thanks to the mouse wheel, to zoom the camera in a way, in fact the camera will
approach the ground and reduce its angle of rotation so as to be almost
horizontal. This view is more aesthetic than anything else because it is not very
practical but o ers a more cinematic and epic view of the game.

41

4.6.2 Managers

I named all classes with a singleton manager. This single tone makes it
possible to limit the number of instances of this class to one and to make it
accessible by absolutely all the other scripts. These algorithms are generally
essential and require recurrent access from other scripts.

Chat Manager
This program, implemented quite late because it is not essential, allows general
management of all messages sent by players. The visual part of this algorithm
will be detailed later in the report. Concretely, each time a player sends a
message it will be stored here thanks to 2 pieces of information, the player who
sends it and its content. Then it will then be sent to all the other players in the
game thanks to an RPC (see multiplayer game).

Instance Manager

This makes it possible to make the link between various local actions and multiplayer
information. At the start of the game, he will retrieve the current player information
thanks to his custom properties (see multiplayer) defined in the waiting room (team,
race, color, starting coordinates). Then he will instantiate the starting troops with the
right coordinates. This manager will then manage the notion of failure that will occur
when a player no longer has a unit or the case where a player disconnects leading to
the disconnection of all the others.

Player Manager
This manager will manage everything that appeals to resources, it is in fact here
that we add or remove the resource and that we find the functions allowing to
pay for constructions or the production of units. It will also manage the di ff
erent space stations so that units such as Constructors can bring their resources
to the nearest space station.

4.6.3 Game

Gameresource
A Gameresource is simply a resource, minerals, energy, and food. It simply
contains its name, quantity, and various methods of modifying its values.

Population

42

This particular GameResource manages the population. It is made up of a
current maximum population and a current population. If the current population
is equal to the current maximum population then no more mobile unit can be
created. To increase this maximum, houses must be built.

Placement
This is the building placement system. It is broken down into 3 subsystems:

Raycaster:
A Raycaster will send a Raycast down and say whether or not it meets the
ground, if not or if the ground is either too close or too far away then a boolean
variable will signal that the cell on which the Raycaster is located is no. is not
available for construction.

DetectionCell:
This is composed of 5 Raycasters arranged like the points of the five on a die so
as to be able to test the square fairly precisely. A DetectionCell represents a
space on the Map and will observe each of its Raycasters, if at least one of them
appears to be unavailable for construction, the initial green colored space will
turn red.

PlacementGrid:
A PlacementGrid will be generated when we want to place a building, it will then
obtain the size of the building in squares and will generate as many
DetectionCell as the building takes up squares. If at least one of the
DetectionCells is red then the PlacementGrid will prevent the player from placing
their building. The center of the PlacementGrid corresponds to the mouse
pointer but with the box system.

This system required some thought before being developed, I could have
contented myself with an algorithm simply preventing two buildings from being
placed one inside the other, but I had more ambition and wanted a system.
which shows the player which square (s) are problematic. Being in space the
distance between the ground and the Raycaster is useless but the system is
there and very functional. On the other hand, the box system is an artifice. There
is no box strictly speaking but simply a calculation which will create a modulo of
coordinates on which a building can be placed. For example if the modulo is 5,
and the player places his pointer at x = 12 then instead of the center of the
PlacementGrid being at x = 12 it will be at x = 10, if the pointer is at x = 13 that of
the PlacementGrid will be at x = 15 and so on.

43

Figure 30 - Construction system

Tasks
The Tasks system has been developed especially for buildings to give them the
ability to perform tasks as the name suggests. At the beginning I wanted to
create several types of tasks, those of production and those of improvement. In
the end, only the first was implemented, the other having become the skill tree.
A production job simply produces one unit. Each task is paid for in resources and
takes a certain time to be carried out.

Although simple to explain, this algorithm took me a lot of time because it mixes
up a lot of previously developed systems, it was necessary to correlate
everything and avoid creating bugs. All while updating the interface to give it the
right information.

4.6.4 menus

Main Menu and In-Game Menu

Once the heart of the game was well underway I wanted to incorporate
multiplayer quickly, but first I had to create menus for it. Given their large
number, I had to create a very general algorithm allowing me to simplify as
much as possible the implementation of a new menu. Indeed, beyond doing
things right for the player, you also need to create tools that are powerful and
intelligent enough to make the developer's job easier.

Main Menu :

Allows you to launch the single player, multiplayer mode, go to the options, see the
credits, or even quit the game. Single player menu:

44

Allows you to choose between campaign mode, quick game mode and endless
mode.

Campaign menu:

Allows you to review the introductory cinematic, do the tutorial or launch one of
the game's campaign missions. Multiplayer menu:

Allows you to choose between joining a game or creating a new one. To join a
game, just type in its name and click on Join.

Game creation menu:
Allows to create a game by choosing the map, and if the player creates a multiplayer
game to give a name to the game as well as to define the maximum number of
players (including AI).

Options menu:
Allows you to adjust certain parameters. It is sorted into several categories:

- Gameplay: Allows you to define the speed of the camera scrolling with the keyboard and
the mouse, to deactivate the scrolling with the mouse and to activate or not the help
bubbles. - Nickname: Allows you to choose your nickname

- Video: Allows you to choose the resolution, activate or not the full screen, and
choose ﬁwe Y\évgl of grapﬁ?c quaﬁty oPtHe game.

- Sound: Allows you to adjust the various sound volumes of the game

I reproduced the same menu during the game, they only miss the option to
change the nickname because it makes sense that it is impossible to change it
during a game.

AlliesMenu
The allies menu allows you to send resources to your allies. It uses the RPC
system (see multiplayer).

loading times
Load times have been added and remain relatively unhelpful. Indeed, the game
is not very resource intensive, the textures are not in very high resolutions and
the models have relatively few polygons, the loading times are barely noticeable,
but the system is there and operational . It uses Unity's ability to be able to load
a scene while keeping the current one usable, and for the loading progress bar,
Unity provides us with a variable between 0 and 1 giving this progress.

45

4.6.5 Interface

In this subsection I will explain everything that appeals to the interface during
the game.

Cards
I named the little cards for each character selected as Card. The panel which
contains them then allows each unit to display an image of its model as well as
its life gauge to have an overview of the selected troops. Its usefulness is not
only visual since clicking on one of these cards allows you to sub-select a unit.
This means that the actions available will be carried out on the underselected
unit and not all the troops.

Figure 31 - Cards

Cat
The visual part of the cat is divided into 2 panels: The first does not offer any
interaction, it is located on the left of the game screen and displays the
messages sent but only keeps them for a while, after a few seconds the
messages disappear. The second is accessible from a menu and displays all the
messages sent without ever deleting them. It o ers a text box to be able to send
messages.
The other method of sending messages is to press enter in the game which
brings up a text box to write your message.
These 2 panels use the Chat Manager which serves as a kind of message bank.

advancement bar
It is simply a progress bar that appears when you select

46

a building under construction and which gives the progress of this one.

panel description
Appears when you hover the mouse over a button to construct a building or

instantiate a unit. It contains the name of the object to be created, its resource cost
as well as a small description of the object.

Populati
Energy : 0 Ore . 40 Food: O

Figure 32 - Panel Description

Help
This is a small panel that will display the usefulness of certain buttons when
hovering the mouse pointer over them because some buttons use icons which
can be confusing. This panel can be deactivated in the options. It occurs in
particular when the mouse is hovered over the icons on the minimap.

Figure 33 - Help bubble

47

Help Menu
This menu contains many tips to allow the player to advance properly in the
game. It can help in case the player forgets to use certain game mechanics for
example.

jobless button
This button is used to indicate whether or not certain manufacturers are
unoccupied, and if so then clicking on this button selects that unit and moves the
camera above it.

Monodescr
This panel appears when selecting only a unit and only displays its name and the
amount of resource it carries if it is a constructor.

Portrait
The portrait shows the life of the underselected unit as well as its model. This is
not the display of a model from the game's Assets but of a camera which is
placed in front of the under-selected unit, the portrait simply shows what this
camera sees.

Figure 34 - Portrait

Resources
When launching the game, the resource panel will generate as many panels displaying the
name and quantity of resources as there are resources added to the game.

Tools

48

The tools panel is one of the most important features of the game. A tool here
designates a button associated with a unit and which will perform an action with
this unit. For example: The one to move the unit, to stop it, to display the
construction menu, to instantiate a unit, to go and repair a building and so on.

This panel going to be used very often it had to be well coded, to be powerful
enough but also easy to use for the developer. In fact, for some particular tools
it is necessary to create particular scripts but for the units it is enough to drag
and drop the prefabricated of this unit in the list of tools of another unit so that
it can generate a tools which create a Task instantiation for example.

Figure 35 - Tools

fl oating life bar
For each instantiated unit, a fl oating life bar will be generated and will show the
life of a unit when the mouse is passed over it.

minimap The minimap (or mini-map) is actually a simple camera placed
above the game and which gives an overview. Each unit is assigned an icon
which will only be displayed on the camera. It also contains other features:

- If a unitis in the fog of war it will not appear on the minimap

- ﬁ\ left click on the minimap moves the camera so that it looks at the place where
the pointer is

- Aright click moves the selected units to the point on the minimap
- Arectangle indicates the area observed by the camera
- A button allows you to place a marker on the minimap, all players from

49

Figure 36 - Floating Life Bar

the team will see it too

- A button allows to display or not the bottom of the minimap

- A button allows to display or not the units

- A button allows you to activate or not the system for training troops

-téat#]{tton allows you to change the management of the display of colors according to the

Figure 37 - Mini-Card

Selectionbox
This is the rectangle that will show the player which zone he is selecting.

TemporaryMessage
Placed at the top right of the screen, this zone will display temporary messages
to justify the player why he cannot yet perform a

50

action. For example if he tries to build a building when he does not have enough
resources.

4.6.6 Units

In this sub-part I will explain everything that appeals to units in general,
more specific units such as buildings or mobile units will be detailed later in the
report.

Interactable
This is the basic unit, it has no method or attributes, it only de fi nes that we can
interact with this object by right clicking on it.

Selectable
It inherits from Interactable, and makes it possible to make a unit selectable. In
fact, this class defines the notion of Highlight (when you pass the mouse over a
unit without selecting it, a colored circle will activate to show that the selection is
possible) and of selection (the circle is opaque). This circle will have a di selon
erent color depending on whether or not the unit belongs to the player, his team
or the enemy teams. The class also contains the name of the object as well as its
cost, description and the time required to produce it.
This class also makes it possible to generate the field of vision, that is to say how
far the fog of war (see fog of war) is dissipated around this unit.

Figure 39 - Highligh-
Figure 38 - Normal ted Figure 40 - Selected

DestructibleUnit

It inherits from Selectable, and makes it possible to make a unit destructible. In fact,
this class defines the notion of the life and death gauge. This is where we de fi ne

51

the life of a unit, that it can be healed and destroyed.

Resource Unit
She inherits from Interactable. This unit contains a certain amount of a certain
type of resource and is destroyed when empty.

4.6.7 Buildings

Constructedunit
It inherits from DestructibleUnit, it is the base building. It has a Task System (see
Tasks), and it has an InConstructionUnit attached (see InConstructionUnit) as
well as a model of the building but all green and transparent (called Ghost, it is
used to display the building when it is desired. to place). Another system is
attached to it, that of repair, in fact if the building does not have its maximum
life, then one or more builders can be sent to repair it.

InConstructionUnit
It also inherits from DestructibleUnit, each ConstructedUnit has an
InConstructio- nUnit, it is the same building except that it is the version under
construction, this makes it possible to manage scripts with totally di ff erent
operations independently and therefore more simply.
It has roughly the same repair system as the ConstructedUnit but for the
construction of the building itself.

Production unit
This building will produce units, its speci fi city and have a rally banner, ie the
player will place a banner attached to this building and the units produced will
automatically try to join the banner once instantiated.

House
This building increases the maximum population.

Radar
This building can be built a limited number of times (this number can be
increased in the skills tree). It does nothing in particular except warn the player
when an enemy unit enters its line of sight. A voluntarily larger field of vision
than other buildings.

52

Space station
It is the main building of the base, it is the place where the miners go to deposit their
resources. It is he who makes it possible to produce builders.

EnergyFarm
This building continuously generates Energy.

Farm
This building produces food which must then be collected by the builders and
brought to the space station.

Asteroid
This unit inherits from ResourceUnit, it contains a de fi nite number of ores (one of the
game's resources) and self-destructs when everything has been mined.

Laboratory
This building continuously generates technology points (for the skill tree).

Movable unit
This class inherits from DestructibleUnit and unlike the building it is
characterized by the ability to move. It can also be hacked (The unit now belongs
to the hacking player).
Each mobile unit is equipped with the patrol system, thanks to a Tools, a mobile
unit can be told to go back and forth continuously between its current point and
the place pointed by the mouse.

Builder
This mobile unit has a lot of features:
- Harvest: She %oes bacli)anE forth betweerhher glace of harvest and the nearest
space station, bringing back resources each tim

- Construction and Repair: She can build a building or repair it (the more
constructors who build / repair a building, the faster it goes)

This unit took me a lot of time and thought to organize myself well and that the
various associated behaviors do not influence each other at the risk of creating
bugs. (For example, if a builder was ordered to construct a building while
repairing another, the 2 behaviors should not be mixed up otherwise the unit
would have had a

53

chaotic deportment). Each module is simple but managing all these modules is
more complex.

Mobile Medical Station
This unit heals surrounding mobile units.

Hacker
This unit can by de fi nition hack another (this causes them to change sides), but
also throw electromagnetic bombs as well as reveal an area for a period of time.

Basic troop
Combat Troop by default its attack and defense are balanced.

Light Troop
Combat troop, its attack is powerful and its defense weak, but it is very fast and
consumes very little population.

Bomber
Slow but robust combat unit that sends out very powerful missiles but at a low
rate.

Cruiser
Single unit very slow, very resistant, but which improves the surrounding allied
units and once the right skill is unlocked, it acts as a relay for the ships
instantiation buildings. That is, the ships created will appear at the level of the
cruiser.

4.6.8 Graphics

Fog of War
The principle of fog of war is simple, the game map is covered with a fog, each
unit has a field of vision in the form of a more or less large circle and which will
dispel this fog. This system is actually made up of 2 systems, one is purely
graphic and the other is only programming oriented.

Graphically it is about a layer which darkens the game and thanks to the shader

system integrated in Unity, we can simulate that an area is lit. Technically, when
an enemy unit is not in the field of view of any allied unit,

54

then its textures, its model, its minimap icon are deactivated, the unit is invisible.

This system gave me a lot of problem because it uses shaders that I know very
little about and which are not coded in C # but Cg HLSL which I do not know. In
addition, very few forums and tutorials exist about the fog of war. It took time

and research for all the visual part, the code part being more traditional.

Figure 41 - Fog Of War

4.6.9 Waiting room

This part will detail the functioning of the Waiting Room, that is to say the
waiting room in which the players wait for others to join them or for the creator
of the game to launch it. This room will independently manage each player from
the moment they enter the waiting room. First of all a parameter panel visible to
all players will be displayed, only the player who owns it can modify it, this panel
will allow the player to define his class, his team, his race and his color. . The
creator of the game can add Bots (Artificial Intelligence) and start the game after
all players have checked the box ready. Once this box has been checked, a player
can no longer modify his properties. At the start of the game,

4.6.10 Skill Tree

Beyond the construction we wanted a notion of progression to be presentin
the game and what is more that allows the players to differentiate themselves so
that the winner is not only determined by the strategy.

55

PLRAYERS: 3/4

WRITING ROOM

Player 2 | Faction 1~/ Team1 ~ e
BOT Faction ~ | Team2 v [l v X Reaqy

Plagyer1 Fectioni~ Team1 ~~ v X

WRITING FOR PLAYERS....

LERVE ROOM ; START GAME

Figure 42 - Waiting Room

in combat but also throughout the course of the game. We therefore opted for a
skill tree. This is divided into several distinct sub-trees each dedicated to a
particular sector which are:

- Light attack

- Heavy attack (bomber)

- Research and development (Hacker)

- Cruiser

- Economy (Construction, resources)

- Defense (turret)

Each of these trees therefore makes it possible to unlock units or skills but also
to improve certain statistics such as the construction speed or the damage per
second of a unit. In addition, these trees are restrictive, that is to say that when
several skills are at the same height of the tree, choosing one of them will block
all the others. The goal being that at the end of the game, there is very little
chance that the players will have made the same choices and end up with the
same base and the same army. Purchasing skills costs technology points.

4.6.11 Online

Photon
To manage multiplayer in our game, we have chosen to use the Phonone PUN 2
asset, in particular for its accessibility. I followed the advice of InfoSpé

56

RESERRCH & :
LIGHT ATTACK DEVELOPMENT DESTROYER

ECONOMY
DEFENSE

Figure 43 - Skill Tree

by implementing multiplayer very quickly. PUN o ers several methods to
synchronize the various elements of the game online, first of all we can choose
to send a stream which contains various variables to be synchronized, otherwise
we can use the RPCs which allow to execute a function on the same instance of
an object in other players.

4.6.12 Preparation for Al

Before I started the Al core, I first had to prepare the game for it to arrive.
Having never developed an Al for this type of game, my algorithms were not
designed for it. In fact, until then, the identification of the player to which a unit
belongs went through the system implemented for multi-player, but it is not
possible to create “dummy” players corresponding to the IAs. The host of the
game (the one who created it) must therefore contain all the Als locally. I then
had to implement methods to identify if a unit is player-owned or Al and react
accordingly.

Then I had to implement some tools to be able to allow the Al to control his
game. Indeed, features like unit instantiation or building construction were
originally designed for the player who is equipped with a mouse and a keyboard
in particular. I then developed di ff erent module for each type of action:

57

-Th : Thi j ill al k if th fthe AL i for th
RSP QRS M Pt F che army of the AL s ready fo the

- Builders: This module allows you to retrieve builders according to their current
actions (does nothing, mine or build) as well as distribute them equitably among
all possible tasks.

- Construction: Allows the Al to simply issue the order to construct a building.
The position of the building generated in the shape of a snail. That is, buildings
are constructed around the initial Space Station to form a square that will
become ever larger as the building is constructed. However, the Al checks
before building that the terrain is suitable. Thus, if an ore or a building is already
present it will automatically move to the next position.

- Instantiation: While the player must select a building to ask him to instantiate a
unit, the AI will ask for a unit, and then, it will deduce in which building it is
ideal to initiate the task.

- Mining: Allows you to send a constructor to mine. The algorithm will then
determine the optimal asteroid or farm to send the troops to. To determine it,
the algorithm will assign a score to each compatible resource building and take
the one with the lowest score. This score is established by the distance between
the Space Station and the resource building as well as by the number of builders
already mining on it.

The purpose of these tools is to allow the Al to control its part, we can image
these tools as the body of the Bot, and the Al as its head. Once these tools were
completed, I was able to move on to the development of Al that is to say, use them
intelligently.

46.131A

Before talking about how Al works, I will focus on the reflections and the
path that led me to this vision of artificial intelligence.

History:

Having no experience in artificial intelligence, and faced with the di ffi culty
of developing an Al for a strategy game, we wanted to make it fairly modest in
terms of reasoning faculty. Indeed in a strategy game the AL must know how to
manage a lot of things, it must destroy the opposing teams but for that it must
first develop its base, manage its resources, create enough builders, discover
new resources and

58

construct such or such a building to achieve its ends. So I favored making a
simple but functional Al to the detriment of a more ambitious Al at the risk of
failing.

My first idea was to mix scripts and reactions, indeed I had no idea how to make
the AI manage its resources well and make the right choices. Concretely, this
had to result in a series of actions that the AI would have to performin a
scripted manner with a few small liberties. The main lines of its behavior had to
be scripted, in particular the construction of this or that building, while other
actions such as the creation of new builders had to be automatically managed by
the Al The first flaw of this method is to make this Al last over time, as long as it
has not won it must continue to improve its base as well as to train armies, but if
the Al follows scripted actions it sooner or later would have stopped. To remedy
this I decided that the action sequence that the Al should take would be very
generic and that once all the actions had been performed, the AI would start
following the same actions again (with a few exceptions. near). However a major
flaw persisted, we would have had to create this action list. This is possible but
very complicated, it had to be very well thought out so as not to restrict the Al
To overcome this di ffi culty, I wanted to give the AI more autonomy, when it
would have run out of resources, to determine whether it needs to create a new
unit or to wait or better. allocate, and when this occurs, defer the current task to
the end of the list. To push this principle even further I wanted to ensure that, if
the AI wanted to create a unit, she must have built the right building. It is easy
to automate and that's when I understood where this automation was going to
lead me. In reality it is quite simple for the AI to deduce from itself what it
needs, this is how I changed my way of seeing things to arrive at the Al thatI
am about to present.

IA:

Here is how the AI works: at the start of the game, it is given an objective,
that of forming a predefined army. The AI will then use all the means in its
possession to accomplish this objective; If she does not have the necessary
buildings she will build them, but for that she needs a builder which she will then
create. If it lacks resources, it may or may not ask for new builders, or even
better distribute them, or even wait.

Operation is simple, every task the Al needs to perform is stored in a stack.
When the Al completes a task it pops up to perform the task.

59

coming out of the stack. If she can't do it yet for some reason, she'll stack the
task again and then create a new one that will meet the needs of the initial task.

Each of these tasks somehow gets into error when they are not performed, this
is detected by the Al and, depending on the error, a suitable task will be
created. Once the Al has finished its army, it will detect which enemy base is
closest and attack it. Once the assault is launched, only the death of the troops
will stop it. Indeed, if an army destroys an opposing base it will not return but
will attack the next until victory or death. Meanwhile, in the base, the Al is
already preparing its new army as the previous one sees its number of troops
decrease.

The only predefined elements are:

- The armies: We define ourselves what the AT will have to create as troops.
When an army is finished, the AI moves on to the next, and once the last one
has been created, the AI will create that same army again until the end of the
game. - The maximum number of buildings: In fact, to prevent the Al from
building as many houses as possible at the start of the game, or from building a
new battle station each time the others are full, I have set a maximum number
for each building, and this number will increase each time the AL completes an
army. This helps ensure that the AI base grows continuously and steadily.

4.6.14 Combat

For this defense I also took care of the combat system. The principle is
simple, but two major di ffi culties must be taken into account, the behavior and
the multiplayer.

Since troops are ships, it is normal for them to defend themselves by shooting at
each other with projectiles. Each combat unit observes within a certain radius
around it, if an enemy unit enters its perimeter it will attack it if it does nothing
else. Unit behavior is tricky when an enemy approaches, should they attack
them? continue what she is doing? to run away ? She will just fight back if she
does nothing and if not, continue what she is doing.

When a unit attacks another, it will instantiate projectiles at reqular intervals
towards the enemy which will damage them if they hit them. The troops always
stay in front of their enemy and in case of flight follow them as long as the
distance between the two is sufficiently small. The firing frequency, as well as

60

damage per projectile varies by unit, and by skill tree. One of my di ffi culties was
to manage this in multiplayer, first of all it is not very optimized to instantiate the
projectiles of each troop in multiplayer and to follow their positions, in particular
during big battles. So, since balls only move in one direction, and never change, I
made it so that when a ball is instantiated in one player it is instantiated in
others but the player owning the ball also communicates the force and direction
of the ball to other players who will then move it locally to each other. This has
only a purely visual purpose since it is the owning player who will destroy or not
the ball for all the others when it hits an enemy player. The disadvantage of this
method, unlike the one which consists of synchronizing the positions in line, is
that in the other members of the game this ball may not hit any unit visually but
still do damage because of the latency in multiplayer. However, if the ball
position was synchronized online, it would consume such bandwidth that the
latency would be even higher.

4.6.15 Debugging

A very large part of my working time has been dedicated to correcting bugs,
especially with the arrival of Al and the combat system, and even more so when
it comes to multiplayer.

4.6.16 Miscellaneous improvements

Many details have been improved or added. They are neither essential nor
very complicated, they are generally help messages in the menus in case the
player has for example not given a name for his game or if he opens the allies
panel., or a little message " waitting for players. . .

»In the waiting room to remind the player that he is in the waiting room and his
goal.

4.6.17 Group work

Our tasks having been well distributed, we can work a maximum each on our
side without needing one or the other. We regularly organize meetings to take
stock of what has been done and remains to be done as well as to discuss the
direction the game will take, we discuss how to implement certain features, in
short, we de fi ne what we want the game to be.

61

Concretely it works rather well there have never been any major di ff erents and
our di ff erent areas of expertise allow us to trust each other.

From a technical point of view we are trading on the Discord software and we have
initialized a repository on GitHub.

4.6.18 Optimization

For the last defense, my work was in particular to optimize the game so that
it could be launched by a maximum of di di erent computers with variable
technical speci fi cations and in particular the less powerful ones. The game was
well optimized until then and could run on a lot of machines well. This can be
explained by the fact that the game does not use particularly greedy graphics
effects and those that are more greedy like shadows, ambient occlusion and
anti-aliasing are deactivated if you lower the graphics options of the game.
Game.

In general, RTS type games require a relatively light con fi guration by default.
However, it is a type of game that does not lend itself very well to fi xed con fi
gurations. Indeed, the number of units that can exist at the end of a game can
become very high, and even more so if there are a lot of players in the game.
Thus this kind of game goes from very little demanding in terms of resources to
very demanding when the number of units is substantial. Our game is no
exception to this problem because of only one element of the game which is
very demanding and which is the detection of other units. Each player's unit has
a detection radius which is used to display or not the enemy units (see fog of
war) or to attack them.

From about 80 units on the screen, the number of frames per second on a
computer equipped with a mid-range processor will drop below

60. However, if these same units are more scattered and not on top of each
other then performance goes up very quickly. However, it is very rare to exceed
even 50 units on a single screen, so this is very rare and in all other cases the
game runs very well on very light configurations.

I still tried to optimize this, and this is how I realized thanks to the Unity "pro fi
le" (tools allowing to see what consumes the most resources in our game) than
the components. unit to detect the collision is much more efficient using spheres
than boxes (3-dimensional rectangle). The improvement is slight but present.
Also the best optimization I could do was to replace my collector system.

62

read by another. Until then I used the components of Unity called “colliders”
which allow very simply to detect when another collider comes into contact with
it, when it leaves it and when it stays there. However I do not need to detect
when an element enters the zone but only when it stays there or leaves it.
Unnecessary calculations then weighed down the game. Moreover, in order for
the colliders to be able to detect each other, the object which contained them
had to also have a "rigidbody" which is used to calculate the physics of an object.
However, in a strategy game in space it is useless to calculate the physics (all the
units remaining at the same height in the game and not colliding directly). So I
found another method called "overlapsphere" which eliminates the need for a
rigidbody and only detects units that are in the collision radius and not when it
enters or leaves. With a simple algorithm I can tell when it comes out. But this
new system has greatly improved the performance of the game.

After optimization we were able to test that with a mid-range processor
(Inter Core i5-7300HQ) the game could support 150 units before seeing its
number of frames per second drop below 60 and 220 units for a high-end
processor (i7-7700).

Given that the maximum population per base is 100 and that combat units cost
between 2 and 10 population points, we can consider that a full army at the end
of the game has about 30 to 40 units maximum and therefore end up with more
than 150 units in a very small playing area would require a minimum of 4
players, which is the maximum number of players possible during a game.

Moreover these results come from tests carried out with the graphics parameters at maximum,
at least the performances are approximately 15% higher.

4.6.19 Minimum and Recommended Con fi guration

Minimum Con fi guration:
OS: Windows 7.8 or 10
Processor: Intel or AMD Dual-Core at 1.70Ghz
Memory: 2GB
Storage: 2GB
Graphics card: NVIDIA or AMD DirectX 11 compatible card with 1.5
GB of memory

Recommended Con fi guration:

63

OS: Windows 7.8 or 10

Processor: Intel or AMD Dual-Core at 1.70Ghz

Memory: 2GB

Storage: 2GB

Graphics Card: NVIDIA GT1040 or higher | AMD RX 540 or higher

Tests performed using MSI Afterburner Benchmark software.

4.6.20 Balance sheet

For the first defense I developed a maximum of functionalities for the game
first of all because I had to do an artificial intelligence for the next one and that I
have no experience in this field but also so that between the second defense and
the last one I have for task only to polish the game, to optimize it, to debug it.
Our goal was to provide a game reaching a certain standard of quality. We
wanted anyone to be able to see our game and think that it is a real game
intended for marketing and not an educational game developed in 6 months by
4 students. We believe that this standard has been achieved.

64

5 Conclusion

After many hours of work, our game is fi nalized and all features have been
implemented. We knew how to work in the detail of the game and to refine it,
and it is therefore with pride that we present to you, for this third defense, Year
Zero.

65

